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Chapter 1

NEURAL NETWORK MODELS AND N-QUEEN PROBLEMS

Brief history of neural network parallel computing and four mathematical neural
network models including a McCulloch-Pitts neuron, a sigmoid neuron, a hysteresis
McCulloch-Pitts neuron, and a maximum neuron are introduced. "What is an N-queen
problem?" and a neural network model of the N-queen problem are first presented to
show how to use the neural network (sequential/parallel) model for solving general
optimization problems. Two important issues are highlighted in Chapter 1: I) how to
construct a neural representation from a given problem, and II) how to build the
motion equation considering the necessary and sufficient constraints and/or the cost
function from the problem. Three Pascal programs for N-queen problems are given
for the reader to readily observe the neural network system which can run on virtually
any computer,

1.1 INTRODUCTION

In 1943 mathematical models based on biological computation were proposed by W.
S. McCulloch and W. H. Pitts (McCulloch and Pitts 1943). They attempted to take
advantage of the elegant natural biological computation in the brain of animals and
human beings. D. O. Hebb presented the learning theory for realizing the associative
memory where the strengths of the existing synaptic connections between neurons
are modified by the input patterns (Hebb 1949). B. Widrow at Stanford University
demonstrated adaptive switching circuits in 1960 (Widrow and Holl 1960). In 1961



F. Rosenblatt at Cornell University presented Perceptrons and the theory of brain
mechanisms in his book (Rosenblatt 1962). In 1969 M. Minsky and S. Papert at
MIT showed the limitation of Perceptrons in their book (Minsky and Papert 1969).
The negative results against the artificial neural network computing had caused less
support and interest from governments/industries and consequently shrank the scale of
neural network study and the number of investigators. However a small number of
researchers such as S. Amari, L. Cooper, K. Fukushima, and S. Grossberg studied
the neural network computing during the 1960's and 1970's. In the 1970's J. A.
Anderson and T. Kohonen developed mathematical models of associative memory.

The new discovery in neurobiology and the explosive interest in parallel
computation along with the inexpensive VLSI (very-large-scale-integrated) circuit
technology have caused a dramatic resurgence. In 1985 J. J. Hopfield and D. Tank
proposed an artificial neural network for optimization problems which has attracted
many new investigators to get involved in neural computing (Hopfield and Tank
1985). However in 1988 G. V. Wilson and G. S. Pawley strongly criticized the
neural network for optimization problems (Wilson and Pawley 1988) and R. Paielli
reported the simulation test of the Hopfield neural network in the same problem
(Paielli 1988) both of which discouraged US federal agencies to support the neural
network research for optimization problems. Since 1988 it has been widely believed
that the artificial neural network is not suitable for optimization problems.

This book is intended to demonstrate the capability of the artificial neural
network for solving optimization problems over the best known algorithms or the
best methods if they exist. The book covers a variety of professional fields including
game theory, computer science, graph theory, molecular biology, VLSI computer
aided design, reliability, management science, and communications and computer
networks. It contains ten applications including N-queen problems, crossbar switch
scheduling problems, four-coloring and k-colorability problems, graph planarization
problems, channel routing problems, RNA secondary structure prediction problems,
knight's tour problems, spare allocation problems, sorting and searching problems,
and tiling problems. In Chapter 1 N-queen problems are first introduced for the reader
to understand a basic neural network approach including how to represent a problem
with artificial neurons called neural representation, how to construct the motion
equation from the necessary and the sufficient constraints and/or the cost function in a
given problem, and how to develop a software simulator on a Unix workstation, a



PC machine, or a Macintosh machine. Three Turbo Pascal programs are given to
simulate the artificial neural network in sequential/parallel for N-queen problems in
Chapter 1. The reader is encouraged to solve some of exercises in the end of every
Chapter. After reading Chapter 1, Chapter 2 through 10 can be read independently
except Chapter 5 and Chapter 6. In order to understand RNA secondary structure
prediction problems in Chapter 6 and channel routing problems in Chapter 5, reading
Chapter 4 is recommended. The important mathematical background involved in
neural computing for optimization problems is summarized in Chapter 12. Chapter
13 shows on-going research applications including the module orientation problem,
the maximum clique problem, the max cut problem, and other crossbar switch
scheduling applications. Chapter 13 also depicts the future research of neural
computing for optimization problems. Finally Chapter 14 introduces Conjunctoids
and artificial learning.

1.2 MATHEMATICAL NEURAL NETWORK MODELS

The mathematical model of the artificial neural network consists of two components;
neurons and synaptic links. The output signal transmitted from a neuron propagates
to other neurons through the synaptic links. The state of the input signal of a neuron
is determined by the linear sum of weighted input signals from the other neurons
where the respective weight is the strength of the synaptic links. Every artificial
neuron has the input U and the output V. The output of the ith neuron is given by
V;=£(U;) where f is called the neuron's input/output function. In this book we
introduce a sigmoid function, a McCulloch-Pitts function, a hysteresis McCulloch-
Pitts function, a modified McCulloch-Pitts function, and a maximum function as the
neuron's input/output function.

The interconnections between the ith neuron and other neurons are determined
by the motion equation. The change of the input state of the ith neuron is given by
the partial derivatives of the computational energy function E with respect to the
output of the ith neuron where E follows an n-variable function: E(V,, Vz,...,Vn).
The motion equation of the ith neuron is given by:



dU;j _ _ 9E(V1, V2,..,Vn)
dt a'Vi

(L1)

The goal of the artificial neural network for solving optimization problems is to
minimize the fabricated computational energy function E in Eq. (1.1). The energy
function not only determines how many neurons should be used in the system but
also the strength of the synaptic links between neurons. It is constructed by
considering the necessary and sufficient constraints and/or the cost function from the
given problem. It is usually easier to build the motion equation than the energy
function. From Eq. (1.1) the energy function E can be obtained:

=| qe=-1 Ui4v.
E-[ = f—-&;ldv, (1.2)

The artificial neural network provides a parallel gradient descent method to
minimize the fabricated energy function E. Six convergence theorems/proofs of the
artificial neural network are given in Chapter 12 to provide a mathematical
background: 1) the proof of the harmfulness of using the decay term in the motion
equation although it is still widely believed that the decay term is absolutely
necessary, 2) the convergence theorem of the analog neural network without the decay
term, 3) the convergence theorem of the McCulloch-Pitts neural network, 4) the
convergence theorem of the discrete neural network, 5) the convergence theorem of
the hysteresis McCulloch-Pitts neural network, and 6) the convergence theorem of
the maximum neural network. It is not required for the novice reader to fully
understand all of the mathematical background in Chapter 12 but it may be needed for
the advanced reader.

The input/output function of the McCulloch-Pitts binary neuron model is shown
in Fig. 1-1, that of the hysteresis McCulloch-Pitts neuron model in Fig, 1-2, and
that of the sigmoid neuron model in Fig. 1-3 respectively.



Fig. 1-1 McCulloch-Pitts Input/Output function

The McCulloch-Pitts input/output function is given by:

V=f(U)=1if U>0
0 otherwise (1.3)

where V; and Uj are the output and the input of the ith neuron respectively. If the

energy function follows the quadratic form, U; will be given by: UFZ WiV
k
where Wy. is the strength of the synaptic link from the kth neuron to the ith

neuron, The state of the McCulloch-Pitts neural network is allowed to converge to
the local minimum where the convergence speed is relatively faster than that of the
sigmoid neural network. However the McCulloch-Pitts neural network sometimes
generates undesirable oscillatory behaviors. In order to suppress oscillatory behaviors,
the hysteresis McCulloch-Pitts neuron model is introduced where the input/output
function of the ith hysteresis neuron is given by:

V;=1if U>UTP (Upper Trip Point)
=0 if U;<LTP (Lower Trip Point)
unchanged otherwise (1.4)

where UTP is always larger than LTP. Because of suppressing the oscillatory



behavior it shortens the convergence time consequently.

LTP O UTP

Fig.1-2 Hysteresis McCulloch-Pitts input/output function

The neural network for combinatorial optimization problems was first introduced
by Hopfield and Tank in 1985 (Hopfield and Tank 1985). They use the predefined
energy function E which follows the quadratic form:

N N N
E=Y, D, WiViVi+ 2, Vil (1.5)
i=1 j=1 i=1

where wij is the strength of a synaptic link between the ith and the jth neuron

where the condition of wij=wji must be always satisfied. Note that [; is the constant

bias of the ith neuron.
Hopfield gives the motion equation of the ith neuron (Hopfield and Tank 1985):

dU; U; JdE
dt tl "9V (1.6)

where the output follows the continuous, nondecreasing, and differcntiable function
called sigmoid function:



Vidﬂji)%(tanh(loUiJ'Fl) (L7

where A is a constant which is called gain and it determines the slope of the
sigmoid function.

Wilson and Pawley strongly criticized the Hopfield and Tank neural network
through the travelling salesman problem (Wilson and Pawley 1988). Unfortunately
Wilson and Pawley did not know what causes the problem. The use of the decay term
(-Uj/t ) in Eq. (1.6) increases the computational energy function E under some
conditions instead of decreasing it. The detail of the conditions and the proof are

given in Chapter 12,
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Fig. 1-3 Sigmoid input/output function

In the McCulloch-Pitts neural network with/without hysteresis or in the sigmoid
neural network it is not always guarantced that the converged state is equivalent to an
acceptable solution. The acceptable solution means that it satisfies the required
constraints, however it may or may not be the best solution. However in the
maximum neural network it is always guaranteed to generate acccptable solutions.
The maximum neural network is composed of M clusters where each cluster consists
of n neurons. One and only one neuron among n neurons with the maximum input
per cluster is encouraged to fire in the maximum neural network. The input/output
function of the ith maximum neuron in the mth cluster is given by: Vg, ; =1 if

Upi=max{Ugp1,..Uppland Uy ;2 Un j for i > j, and 0 otherwise. In the



maximum neuron model it is always guaranteed to keep one and only one neuron (o
fire per cluster. The maximum neuron model has the following advantages: 1) every
converged state is equivalent to a feasible solution; 2) tuning the coefficients
parameters is not needed; and 3) the termination condition of the equilibrium state is
given by the simple mathematical formula, while the other existing neural network
models must suffer from the unacceptable solution from the converged state (where
the definition of the convergence condition is mathematically unclear) and must tune
the parameters in the motion equation very carefully.

1.3 N-QUEEN NEURAL NETWORK

The 8-queen problem was proposed in 1848 and it was investigated by several famous
mathematicians including C. F. Gauss in 1850 where the goal of the problem is to
place 8 queens on an 8 x 8 chessboard in mutually nonattacking positions. The 8-
queen problem has been used as a benchmark problem to demonstrate divide-and-
conquer methods (Abramson and Yung 1989), trial-and-error methods including back-
tracking algorithms (Bitner and Reingold 1975) (Stone and Stone 1987), and other
methods (Yaglom and Yaglom 1964) (Kale 1990). Although few parallel algorithms
have been proposed (Filman and Friedman 1984) (Finkel and Manber 1987)
(Abramson and Yung 1989), there exists no satisfactory parallel algorithm. Page et
al. presented the first deterministic parallel algorithm based on the Hopfield neural
network (Page and Tagliarini 1987). Akiyama et al. proposed an O(N2) parallel
algorithm based on the stochastic neural network model (Akiyama et al. 1989).
However the state of the system based on any one of the existing neural network
algorithms often converges to the unacceptable local minimum. In other words, their
solution quality dramatically degrades with the problem size.

The goal of a general N-queen problem is to locate N queens on an N x N
chessboard where any pair of queens does not command each other, Note that a queen
commands vertically, horizontally, and diagonally as shown in Fig. 1-4.
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Fig. 1-4 How a queen commands

It is well understood that one and only one queen must be located per row and per
column so as to locate N queens on an N x N chessboard. In other words more than
one queen should not be located per row and per column. The condition of the
constraints or the violations gives the interconnections of the artificial neural
network. An N x N neural array is prepared for the N-queen problem where each
element of the neural array represents a square of the N x N chessboard. The output
state of the ijth neuron gives the location of a queen in the ith row and the jth
column. In other words, Vjj=1 means that a queen is located in the ith row and the
jth column, Vjj=0 means that no queen is located in the ith row and the jth
column. For example, to locate a queen in the second row and the third column as
shown in Fig. 1-4, V73 must be V23=1. The motion equation of the ijth neuron for

the N-queen problem is given by:

) N N
‘%‘lm Evik-l)- kaj-l)

k=1 k=1
B D, Vikjk-B DX Vigjk  forig=l.5  (18)
1<ik,j-ksN 15i-k,j+k<N
k=0 k#0

In Eq. (1.8) the first term gives the row constraint such that one and only one
queen/neuron should be located/fired in the ith row. The second term describes the



10

column constraint such that one and only one queen/neuron should be located/fired in
the jth column. The third and the fourth term represent the diagonal constraints such
that no pair of queens should not diagonally command each other. The following two
terms must be added to Eq. (1.8) to enable the state of the sysiem to escape from the
local minimum and to converge to the global minimum or the acceptable solution:

N N

+C Z ?ﬂ,;) 2 Vﬁ) (1.9)
k=1 k=1

where h(x) is 1 if x=0, and 0 otherwise. The function of h(x) is called hill-climbing

term. In the local minimum no neurons/queens are fired/located on the ith row or the

Jjth column. For example in the 5-queen problem with A=B=C=1, the motion

equation of the neuron in the second row and the third column as shown in Fig. 1-4

is given by:

AUg3 = d—glu = «(V91+V22+¥23+Voq+Vas5 -1) {V13+V3+V33+V43+Vs53-1)

“(V12+V34+V45) -(V1a+V32+V41)
+h(V914+V22+V23+Vo4+Vash+h(V 34 Va3+ V334 V434 V53) (1.10)

Fig. 1-5 and Fig. 1-6 show one of the solutions for the 5-queen problem and one of
the local minima for the 6-queen problem respectively. Remember that in the local
minima less than N queens are placed on an N x N chessboard but any additional
queen cannot be placed in any row or column. For example, as shown in Fig. 1-6 we
cannot locate any queen in the second column or in the fourth row so that we say, the
state of the system is in the local minimum.
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Fig. 1-5 One of the solutions
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Fig. 1-6 One of the local minima

1.4 GENERAL OPTIMIZATION PROGRAMS

Since a parallel machine is not widely available to many readers for parallel
simulation, two programs are provided to simulate the behavior of the parallel
machine using a sequential machine as if the program is running on the parallel
machine. In order to distinguish a sequential model and two parallel models, three
general programs for solving optimization problems are given: Program1 to simulate
a sequential neural network model, Program2 for a synchronous parallel neural
network model using a sequential machine, and Program 3 for an asynchronous
parallel neural network model using a sequential machine.
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In order to numerically solve the partial differential equation or the differential
equation, the first order Euler method is widely used where it is the simplest among
the existing numerical methods. Based on the first order Euler method, the value of
U(1+1) is determined by U(t) and AU(1):

U(t+1)=U(t)+AU(t). At (1.11)

where AU(1) is given by Eq. (1.1). With At=1, Eq. (1.11) for N-queen problems
(where a two dimensional neural array is used) is given by:

Uij{t+l)=Uij{l)+ﬁUij{t] forij=1,....N (1.12)

In order to solve N-queen problems, the initial values of Uij(ﬂ) for i,j=1,...,N are
randomly given and Eq. (1.12) is iteratively used until the state of the system reaches
the equilibrium state. However the equilibrium state is not always equivalent to the
acceptable solution. In the N-queen problem, the condition of the program
termination is given by:

AUj;(=0 for ij=1,...N (1.13)

The condition of Eq. (1.13) implies that the constraints are all satisfied. In other
words, no violations can be found on the condition. Eq. (1.12) is either sequentially
updated or parallelly updated. In parallel computing there are a synchronous parallel
model and an asynchronous parallel model. In the synchronous parallel model, clock
signals or handshaking signals are used for synchronous communications between
processing elements (neurons). In the asynchronous parallel model the state of every
processing element (neuron) is updated asynchronously without using any
clock/handshaking signals. In Fig. 1-7 Program1 shows a gencral program for
simulating the sequential neural network model where a two dimensional neural
representation and the McCulloch-Pitts neuron model are used. Of course, it is
possible to use a single dimensional neural representation or a higher dimensional
neural representation in Program1. As soon as updating the value of Uij- the value of
Vij is evaluated based on the input/output function of the neuron model in Program]1.
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It is quite straightforward to simulate a parallel computing model using a
sequential machine. Of course if the reader is able to use a parallel machine the
motion equations can be solved parallelly on it. There are two parallel computing
models: a synchronous parallel model and an asynchronous parallel model. Program?2
in Fig. 1-8 illustrates a program to simulate the synchronous parallcl model which
runs on a sequential machine as if it runs on a parallel machine. In the first loop all
input values of Ujj for i,j=1.....N are sequentially updated while all output values of
Vij for i,j=1,....N are fixed. Then in the second loop all output valucs of Vi for
i,j=1,...,N are sequentially updated while all input values of Uj; for i j=1,...,N are
fixed. It is equivalent to simultancously updating the values of all inputs and
outputs. In Program2 the McCulloch-Pitts neuron model is used:

Programi sequential-simulator

gin
initialization of Uij and Vij fori,j==1 o N;
[*%% Main Program ***|

while (a set of conflicts is notempty) do

fori=1to N

forji=10o N

begin
Uij:=Uij+ AUij;
l If Uij>0 then Vij:=1 else Vij:=0;
end;

end;

| 1*%k Main Program end **#/

Fig. 1-7 Simulator for a sequential neural network model

Program3 in Fig. 1-9 shows the asynchronous parallel simulator to run on a
sequential machine. Program? is very similar to Program3 except the statement of "If
random<x then." The variable "random" is an integer with a range from 0 to y where
X is the constant number and x satisfies O<x<y. If random is smaller than x then
update the state of the output, otherwise keep the previous state of the output. The
statement of "If random<x then" provides the pseudo asynchronous systecm behavior
in simulation.
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initialization of Uij and Vij forij=1 ©N; |

%% Main Program ***/
while (a set of conflicts is not empty) do

*** The first loop ***/
fori=1 o N
forji=1 o N
Uij=Uij+AUjj;
{*** End of the first loop ***/
[*** The second loop ***/
fori=1o N
forj=1 o N
If Uij>0 then Vij=1 else Vij=0,
[*** End of the second loop ***/
end;
end,;
[*** Main Program end ***/

Fig. 1-8 Synchronous parallel simulator on a sequ
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Program3 Asynchronous-parallel-simulator
begin
irli%a]jzaﬁon of Uijj and Vij fori,j:==1 o N;,
ok Main Program ¥/
while (a set of conflicts is notempty) do
begin
¥ The first loop ***
fori:=1 o N
l forji=1o N
Uij:=Uij+AUij;
Pk BEnd of the first loop ***|
{*** The second loop ***|
fori=l1o N
forji=1o N
If random<x then
If Uij>0 then Vij:=1 else Vij:=0,
Pk End of the second loop ***/
end;
end,
Pk Main Program end *¥¥

Fig. 1-9 Asynchronous parallel simulator on a sequential machine

1.5 N-QUEEN SIMULATION PROGRAMS

Fig. 1-10 shows a Turbo Pascal program which is based on Program1 as shown in
Fig. 1-7. It is ready to run on any Macintosh machine. The program is to simulate
the sequential N-queen neural network model. In the program the first term and the
second term of the motion equation in Eq. (1.8) are realized by:

sum_column:=0;sum_row:=0;
for k:=1 10 max do begin sum_row:=sum_row+ Vi k];
sum_column:=sum_column+V[kj]; end;

where max is the N-queen problem size. The third term and the fourth term in Eq,.
(1.8) or two diagonal constraints are given by:

diagonall:=0; k:=1;
while((j+k)<=max) and ((i-k)>=1) do begin diagonal 1:=diagonall+V[i-
kj+k]; k:=k+1; end;
k:=1;
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while((j-k)>=1) and ((i+k)<=max) do begin diagonall:=diagonal 1+ V[i+kj-
k]; k:=k+1; end;
diagonal2:=0; k:=1;
while((j+k)<=max) and ((i+k)<=max) do begin
diagonal2:=diagonal2+V[i+k,j+k]; k:=k+1; end;
k:=1;
while((j-k)>=1) and ((i-k)>=1) do begin diagonal2:=diagonal2+V[i-k,j-k];
k:=k+1; end;
The hill-climbing term in Eq. (1.9) is given by:

h:=0;
if (sum_column=0) then h:=1; if (sum_row=0) then h:=h+1;

Therefore the new input state of the ijth neuron in Eq. (1.12) is finally computed
by:

Uli j):=U[i,j)- A*(sum_row-+sum_column-2)-B*(diagonal1+diagonal2)+C*h;

In order to shorten the convergence time, the values of the inputs are always kept in
the certain range. The value of the input U; j» the output value of the ijth neuron is
cvaluated by:

if (U[i,j]>15) then U[i,j]:=15; if (U[i,jl<-5) then U[i,j):=-5;
if U[i,j]>0 then V[i,j]:=1 else V[i,j):=0;

where the maximum and the minimum value of the input are given by +15 and -5
respectively. The termination condition in Eq. (1.13) is realized by:

diag:=1;
while ((not keypressed) and (diag>0) and (t<2000)) do
begin
diag:=0,
for i:=1 to max do
for j:=1 to max do
begin
conf:=1;
if((sum_column+sum_row=2) and (diagonall<2) and (diagonal2<2)) then conf:=0;
diag:=diag+conf;
md;{ltllii#t T]'.I.E end 'Dfi ﬂl'l.dj ]mp *#t#iii!]
end; (******+* The end of while loop **#****#+)
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If diag=0 then the program will be automatically terminated. The following routine
displays the simulation result of the N-queen problem on the Macintosh screen.
clearscreen;
for i:=1 to max do
for j:=1 to max do
if (V[i,j]=1) then
begin
SetRect(tempRect,0,0,length,length); OffsetRect(tempRect,(i-1)*length,(j-
1)*length); PaintRect(tempRect);
end;
MoveTo(0,0); LineTo(0,max*length); MoveTo(0,max*length),
LineTo(max*length,max*length);
MoveTo(max*length,max*length); LineTo(max*length,0);
MoveTo(max*length,0); LineTo(0,0);
for i:=1 to max do
begin
MoveTo(i*length,0); LineTo(i*length,max*length); MoveTo(0,i*length);
LineTo(max*length,i*length);
end;
gotoXY(50,1);writeln('No. of steps=',t);

Fig. 1-11 shows a Turbo Pascal program for simulating the synchronous parallel
N-queen neural network model where the hysteresis McCulloch-Pitts neuron is used.
UTP=3 and LTP=0 are used for hysteresis.

Fig. 1-12 depicts a Turbo Pascal program for simulating the asynchronous
parallel N-queen neural network model where the same hysteresis McCulloch-Pitts
neuron model is used. The difference between the sequential-simulation program in
Fig. 1-10 and the synchronous-parallel-simulation program in Fig. 1-11 or the
asynchronous-parallel simulation program in Fig. 1-12 lies in that the output values
of the neurons are simultaneously updated outside of the motion equation loop for
parallel simulation, while the output value of every neuron is individually computed
as soon as the input of the neuron is evaluated inside of the motion equation loop for
sequential simulation.

The asynchronous parallel system has a distinguished advantage over the
synchronous parallel system. The asynchronous parallel system does not require any
clock or synchronization mechanism. In Fig. 1-12 the program attempts to
sequentially simulate the asynchronous parallel N-queen neural network model. The
statement of "if (abs(random) mod 2 <1) then" in the output evaluation routine
provides the pseudo asynchronous behavior in simulation.



18

Fig. 1-13 depicts several simulation results of N-queen problems using the
illustrated programs in Fig. 1-10, Fig. 1-11, and Fig. 1-12. It takes about 11
minutes to solve a 100-queen problem on a Macintosh SE/30 where it only requires
36 iteration steps. If 10,000 processing elements are provided and assume that each
processing element has the processing speed of one million state-updates per second
(1 MSUPS), it will take 36 micro seconds to solve the 100-queen problem.

program sequential_queen,
uses memtypes, quickdraw osintf, Toollntf;
type twod_int= array([1..89,1..89] of integer;
var
A,B,C,t.h,i,j.k,sum_column,sum_row,diagonall,diagonal2 conf,diag,secd,row,length
Jmax:integer;
U,V:twod_int; tempRect : Rect;
begin
A:=1; B:=1; C:=1;
writeln(Please define the queen problem size (6-89)."); readln(max);
writeln("Please input a seed(0-9999)."; readin(seed);
for i:=1 to seed do U[1,1):=random; length:=trunc(270/max);
for i:=1 to max do
for j:=1 10 max do
begin U[i,j]:=-trunc(abs(random/4000)); if U[i,j]>0 then V[i,jl:=1 else V[i,j]:=0;
?&ttttrn Main program *RERRRRE )
t:=0; diag:=1;
while ((not keypressed) and (diag>0) and (1<2000)) do
begin diag:=0;
for i:=1 to max do
for j:=1 to max do
begin
sum_column:=0;sum_row:=0;
for k:=1 to max do begin sum_row:=sum_row+V/[i,k];
sum_column:=sum_column+V[k,j]; end;
diagonall:=0; k:=1;
while((j+k)<=max) and ((i-k)>=1)
do begin diagonall:=diagonall+VT[i-k,j+k]; k:=k+1; end;
k:=1;
while((j-k)>=1) and ((i+k)<=max)
do begin diagonal1:=diagonall+V[i+k,j-k]; k:=k+1; end;
diagonal2:=0; k:=1;
while((j+k)<=max) and ((i+k)<=max)
do begin diagonal2:=diagonal2+V[i+k,j+k]; ki=k+1; end;
k:=1;
while((j-k)>=1) and ((i-k)>=1) do begin diagonal2:=diagonal2+V[i-k j-k];
k:=k+1; end;
h:=0;conf:=1;
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if (sum_column=0) then h:=1; if (sum_row=0) then h:=h+1;
if((sum_column+sum_row=2) and (diagonall<2) and (diagonal2<2)) then
conf:=0;
Ulij):=U[i,jl-A*(sum_row+sum_column-2)-B*(diagonal 1+diagonal2)+C*h;
if (U[ij]>15) then U[ij):=15; if (U[ijl<-5) then U[ijl:=-5;
if U[i,j]>0 then V[i,j]:=1 else V[i,j):=0;
diag:=diag+conf;
end; (******** The end of i and j loop ********)
t:=t+1; if (t mod 20 <5) then C:=4 else C:=1; write(t);
ﬁﬂd: [i‘ttltl‘lt m ﬂ-“d ﬂf Whi]ﬁ lmp o e e o o t*}
clearscreen;
for i:=1 to max do
for j:=1 to max do
if (V[i,jl=1) then
begin
SetRect(tempRect,0,0,length,length); OffsetRect(tempRect,(i-1)*length,(j-
1)*length); PaintRect(tempRect);
end;
MoveTo(0,0); LineTo(0,max*length); MoveTo(0,max*iength);
LineTo(max*length,max*length);
MoveTo(max*length,max*length); LineTo(max*length,0),
MoveTo(max*length,0); LineTo(0,0);
for i:=1 to max do
begin
MoveTo(i*length,0); LineTo(i*length,max*length); MoveTo(0,i*length);
LineTo(max*length,i*length);
end;
gotoXY(50,1);writeln('No. of steps=",t);readln;readln;
eud. [it#!#iti m Eﬂd 'ﬂf pmgral“ it!*-#!t}

Fig. 1-10 A program of the sequential N-queen neural network

program sync_parallel_queen,;
uses memtypes, quickdraw,osintf, Toollntf;
type twod_int= array[1..89,1..89] of integer;
var
A.B.(;.t,h.i.j,k,sum_culumn,sum_mw.diagnnall.diagunali.mnf,diag,secdmw,lengm
Jmax:integer;
U,V:twod_int; tempRect : Rect;
begin
A:=]1: B:=1; C:=1;
wrileln('Please define the queen problem size (6-89)."); readln(max);
writeln('Please input a seed(0-9999)."); readin(seed);
for i:=1 1o seed do U[1,1]:=random; length:=trunc(270/max);
for 1:=1 to max do
for j:=1 to max do
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begin U[i,j]):=-trunc(abs(random/1600)); if U[i,j]>0 then V[i,j):=1 else V[i,j]):=0;
?ﬂtttttt Main program ****#ix )
:=0; diag:=1;
while ((not keypressed) and (diag>0) and (t<2000)) do
begin diag:=0;
for i:=1 to max do
for j:=1 to max do
begin
sum_column:=0;sum_row:=0;
for k:=1 to max do begin sum_row:=sum_row+V[ik];
sum_column:=sum_column+V[k,j]; end;
diagonal1:=0; k:=1;
while((j+k)<=max) and ((i-k)>=1) do begin diagonal1:=diagonall+VT[i-
kj+k]; k:=k+1; end;
k:=1;
while((j-k)>=1) and ((i+k)<=max) do begin diagonall:=diagonal 1+ V[i+k,j-
k]: k:=k+1; end;
diagonal2:=0; k:=1;
while((j+k)<=max) and ((i+k)<=max) do begin
diagonal2:=diagonal2+V[i+k,j+k]; ki=k+1; end;
k:=1;
while((j-k)>=1) and ((i-k)>=1) do begin diagonal2:=diagonal2+V[i-k j-k];
k:=k+1; end;
h:=0;conf:=1;
if (sum_column=0) then h:=1; if (sum_row=0) then h:=h+1;
if((sum_column+sum_row=2) and (diagonal 1<2) and (diagonal2<2)) then
conf:=0;
Uli,j):=Uli j)-A*(sum_row+sum_column-2)-B*(diagonal1+diagonal2)+C*h;;
if (U[i,j]>15) then U[i,j):=135; if (U[i,jl<-20) then U[ij):=-20;
diag:=diag+conf;
'ﬂ-nd; [t#ti#lt# 'rhn :m ﬂfi ﬂndj lOO'p *i#*ilii]
for i:=1 to max do
for j:=1 to max do
begin if U[1,j]>3 then V[ij]:=1; if U[i,j]<0 then V(i j]:=0; end;
t:=t+1; if (t mod 20 <3) then C:=4 else C:=1; write(t);
md; {i*#ii#l* 'I‘he cl'ﬂ 'ﬂf Whllﬁ lmp i***#*i*}
clearscreen;
for i:=1 to max do
for j:=1 1o max do
if (V[i,jl=1) then
begin
SetRect(tempRect,0,0,length,length); OffsetRect(tempRect,(i-1)*length,(j-
1)*length); PaintRect(tempRect);
end;
MoveTo(0,0); LineTo(0,max*length); MoveTo(0,max*length);
LineTo(max*length,max*length);
MoveTo(max*length,max*length); LineTo(max*length,0);
MoveTo(max*length,0); LineTo(0,0);
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for i:=1 to max do
begin
MoveTo(i*length,0); LineTo(i*length,max*length); MoveTo(0,i*length);
LineTo(max*length,i*length);
end;
gotoXY(50,1);writeln('No. of steps="t);readIn;readin;
end, [******** The end of program Sk )

Fig. 1-11 A program of the synchronous-parallel N-queen neural network

program async_parallel_queen;
uses memtypes, quickdraw,osintf, ToolIntf;
type twod_int= array[1..89,1..89] of integer;
var
A,B,C,Lh,ijk,sum_column,sum_row,diagonall,diagonal2,conf,diag,seed,row,length
Jmax:integer,
U,V:twod_int; tempRect : Rect;
begin
A:=1; B:=1; C:=1;
writeln(Please define the queen problem size (6-89)."); readIn(max);
writeln('Please input a seed(0-9999)."); readIn(seed);
for i:=1 to seed do U[1,1):=random; length:=trunc(270/max),
for i:=1 to max do
for j:=1 to max do
begin U[i,j}:=-trunc(abs(random/1600)); if U[i,j]1>0 then V[i,j]:=1 else V[i,j]:=0;
?Euu“ Main program *##*###+%)
t=0; diag:=1;
while ((not keypressed) and (diag>0) and (t<2000)) do
begin diag:=0;
for i:=1 to max do
for j:=1 to max do
begin
sum_column:=0;sum_row:=0;
for k:=1 to max do begin sum_row:=sum_row+V[ik];
sum_column:=sum_column+V[k j]; end;
diagonall:=0; k:=1;
while((j+k)<=max) and ((i-k)>=1) do begin diagonal 1:=diagonall+V/[i-
kj+k]; ki=k+1; end;
k:=1;
while((j-k)>=1) and ((i+k)<=max) do begin diagonall:=diagonal 1+ V[i+kj-
k]; k:=k+1; end;
diagonal2:=0; k:=1;
while((j+k)<=max) and ((i+k)<=max) do begin
diagonal2:=diagonal2+V[i+k,j+k]; k:=k+1; end;
k:=1;
while((j-k)>=1) and ((i-k)>=1) do begin diagonal2:=diagonal2+V[i-k j-k];
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k:=k+1; end;
h:=0;conf:=1;
if (sum_column=0) then h:=1; if (sum_row=0) then h:=h+1;
if((sum_column+sum_row=2) and (diagonal1<2) and (diagonal2<2)) then
conf:=0;
Ulij):=Uli,j]-A*(sum_row+sum_column-2)-B*(diagonal1+diagonal2)+C*h;;
if (U[i,j]>15) then U[i j]:=15; if (U[i j]l<-20) then U[i,j]:=-20;
diag:=diag+conf;
end; [*tttlltt m m ﬂfi andj lﬂop #‘##*#'l]
for i:=1 1o max do
for j:=1 to max do if (abs(random) mod 2 <1) then
begin if U[i,j]>3 then V[ijl:=1; if U[i,j]<0 then V[i j]:=0; end;
t=t+1; if (t mod 20 <5) then C:=4 else C:=1; write(t);
Eﬂd; [i**“‘l‘** m e'm uf Whilﬂ lmp ***li***]
clearscreen;
for 1:=1 to max do
for j:=1 1o max do
if (V[i,jl=1) then
begin
SctRect(tempRect,0,0,length,length); OffsetRect(tempRect,(i-1)*length,(j-
1)*length); PaintRect(tempRect);
end;
MoveTo(0,0); LineTo(0,max*length); MoveTo(0,max*length);
LineTo(max*length,max*length);
MoveTo(max*length,max*length); LineTo(max*length,0);
MoveTo(max*length,0); LineTo(0,0);
for 1:=1 to max do
begin
MoveTo(i*length,0); LineTo(i*length,max*length); MoveTo(0,i*length);
LineTo(max*length,i*length);
end;
gotoX Y (50,1);writeln(No. of steps=",t);readln;readin;
E’ﬂ-‘d-. {**‘***** 'I'he_ cn_d of pmm ********}

Fig. 1-12 A program for simulating the asynchronous-parallel N-queen neural
network model
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1.7 EXERCISES

1. Simulate the 5-queen neural network using the sequential program in Fig. 1-10 in
order to observe whether the system has the local minimum or not. If yes, give an
example of the local minima. Create some of the local minima in the 8-queen neural
network using the program in Fig. 1-10.

2. Simulate the 8-queen neural network using the sequential, the synchronous
parallel, and the asynchronous parallel simulation program. Collect the data on the
frequency of failures and on the average number of iteration steps Lo converge to
solutions in the successful cases. Investigate the behavior of every system with or
without hysteresis, and with or without the hill-climbing term. Observe the effect of
hysteresis by changing the value of UTP and LTP respectively. Explain a role of the
statement of "if (t mod 20 <5) then C:=4 else C:=1;" in every program in Fig. 1-10,
Fig. 1-11, and Fig. 1-12. Observe the effect of the hill-climbing term by changing
the value of the coefficient C and the period in the motion equation.

3. Why is the statement of "if (U[i,j]>15) then Ul[i,jl:=15; if (U[i,jl<-20) then
Ulij]:=-20;" used in the program in Fig. 1-11 and Fig. 1-12? Remove the similar
statement from the program in Fig. 1-10 and investigate the behavior of the system
in terms of the number of iteration steps.

4. Plot the relationship between the problem size and the number of average iteration
steps where at least 100 simulation runs must be performed in every problem. The
range of the problem size is from 6 to 80.

5. Compare some of the conventional algorithms with the neural nctwork algorithm
for N-queen problems in terms of the computation time and the system space.

6. On an 8 x 8 chessboard we want 10 command 64 squares by using the minimum
number of queens.

6.1 Give the neural representation and the motion equation.

6.2 Write a program based on the result of 6.1.

6.3 Collect the data on the frequency of failures and the average number of iteration
steps to converge to the solution,



7. Examine the same problem using thc minimum number of knights on an 8 x 8
chessboard.

8. Writc a program for solving the N-superqueen problem where a solution of the N-
queen problem gives a solution of the (N-1)-queen problem by removing the top row
and leltmost column from the N x N chessboard. This leaves an (N-1) x (N-1)
chessboard with (N-1) mutually nonattacking queens.
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Fig. 1-13 (a) Solutions of N-queen problems
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Fig. 1-13 (b) A solution of 89-queen problems




Chapter 2

CROSSBAR SWITCH SCHEDULING PROBLEMS

A hysteresis McCulloch-Pitts neuron model is used in order to suppress the
complicated oscillatory behavior of neural dynamics. The artificial hysteresis
McCulloch-Pitts binary neural network is used for scheduling time-multiplex
crossbar switches in order to demonstrate the effects of hysteresis. Time-multiplex
crossbar switching systems must control traffic on demand such that packet blocking
probability and packet waiting time are minimized. The system using n x n
processing elements (neurons) solves an n x n crossbar-control problem within nearly
O(1) time, while the best existing parallel algorithm requires O(n) time. The
hysteresis McCulloch-Pitts binary neural network maximizes the throughput of
packets through a crossbar switch. The solution quality of our system does not
degrade with the problem size as far as we have observed the system behavior, The
relationship between N-queen problems and crossbar switch scheduling problems is
also given. This Chapter is largely based on a paper published in Biological
Cybernetics (Takefuji and Lee 1991),

2.1 INTRODUCTION

In time-multiplex communication systems, crossbar packet switches route traffic
from the input to output where a message packet is transmitted from the source to
the destination. The randomly incoming traffic must be controlled and scheduled to
eliminate conflict at the crossbar switch where the conflict is that two or more users
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network, the state of the sysiem is forced to converge to the local minimum. In other
words, the solution quality drastically degrades with the problem size. Takefuji and
Lee have successfully used the Hopfield neural network with McCulloch-Pitts binary
neurons for solving the graph planarization problem (Takefuji and Lee 1989) and the
tiling problem (Takefuji and Lee 1990a) where the state of the system converges to
the near-global minimum in O(1) time. They proved that the state of the binary
neural network system is guaranteed to converge to the local minimum (Takefuji and
Lee 1990b). In 1986 Hoffman and Benson introduced sigmoid neurons with
hysteresis for leaming, where any changes in synaptic connection strengths are
replaced by hysteresis (Hoffman and Benson 1986). Due to the hysteresis associated
with each neuron, the system tends to stay in the region of phase space where it is
located. They proposed the theory on a role for sleep in learning (Hoffman and
Benson 1986).

Dynamic and static hysteresis in Crayfish stretch receptors was reported by
Segundo and Martinez in 1985 (Segundo and Martinez 1985). They stated that
hysteresis may be more widespread than suspected in sensory and perhaps other
system. In 1989 Keeler, Pichler, and Ross presented the effects of hysteresis in
pattern rccognition and learning for improving the signal-to-noise ratio (Keeler et al.
1989). In this Chapter the hysteresis property is exploited in order 1o reduce the
complicated oscillatory behaviors of neural dynamics for solving combinatorial
optimization problems. The hysteresis with each neuron enhances the state of the
system to stay in the region of phase space where it is located. In other words, it
suppresses the oscillatory behaviors of neural dynamics so that the convergence time
to the global minimum is drastically shortened.

The McCulloch-Pitts neuron model is a binary unit whose value depends on the
linear sum of weighted inputs from the other neurons in the network (McCulloch and
Pitts 1943). Fig. 1-1 in Chapter 1 shows the input/output relation of the
McCulloch-Pitts neuron model. In 1982 Hopfield proposed the continuous
input/output unit called the sigmoid neuron model (Hopfield 1982) as shown in Fig.
1-3. Simic presented the molecular electronic device with hysteresis in 1986 where it
has the sigmoid hysteresis (Simic 1986).

In this Chapter a McCulloch-Pitts binary neuron model with hysteresis is
highlighted. Fig. 1-2 shows the input/output function of the hysteresis McCulloch-
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Pitts binary neuron model. A binary neural network with hysteresis is used for
scheduling time-multiplex crossbar switches in order to demonstrate the effects of
hysteresis. The complicated oscillatory behavior is one of the most undesirable
phenomena in neural dynamics for solving optimization problems where we lack the
mathematical tools to manipulate and understand them at a computational level
(Hopfield and Tank 1986). Hysteresis suppresses the oscillatory behaviors of neural
dynamics and consequently it shortens the convergence time to the global minimum.
In other words, hysteresis in individual neurons allows the state of the proposed
neural network to converge to the global minimum in nearly O(1) time. The system
uses an N x N neural network array for solving an n x n crossbar switch problem
where the output of the ijth hysteresis neuron ‘U’-j is given by: Vi.=1if U, .>UTP

1) 1)

(upper trip point), 0 if U..<LTP (lower trip point), and unchanged otherwise. Note

i
that Uij is the input of ll‘li ijth neuron. The output at any particular time does not
depend only upon the present value of the input but also upon past values.

The proposed hysteresis McCulloch-Pitts binary neural network not only
maximizes the throughput of packets through a crossbar switch but also minimizes
packet blocking probability and packet waiting time. The constraints on an N x N
crossbar switch are that no two inputs may be connected to the same output
simultaneously and that no one input may be connected to more than one output
simultaneously. In other words, no two packets should share the same row and the
column of the traffic matrix.

The system simulator was developed based on the proposed model. A large
number of simulation results are shown and demonstrated in order o support the

effects of hysteresis.
2.2 CROSSBAR PROBLEMS AND N-QUEEN PROBLEMS

The constraints are considered that no two packets should share the same row and the
column of the N x N traffic matrix. Our system uses an N x N neural network array
where the motion equation of the ijth neuron is given by:

dU; ), 3 3
_[:’_J._- E: Vig-1 )—A( D, Vi1 |+B g ‘f’ik) +Bh{ > ij)
= k=1

(2.1)
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where h(x) is called the hill-climbing term, h(x) is 1 if x=0, 0 othcrwise. Note that
coefficients A and B are constant integers. The first term and the second term are the
row constraint and the column constraint respectively. The first term forces one and
only one neuron to be fired per row. If no neuron is fired per row or per column then
it will perform excitatory forces. If more than one neuron are fired per row or per
column then it will act inhibitory forces. The third term and the last tcrm are the row
hill-climbing term and the column hill-climbing term respectively. The hill-
climbing terms are activated only when local conflicts (where no neuron is fired per
row or column) are detected. If there is no conflict the hill-climbing terms will
perform no operation. In other words, the local conflicts are resolved by the hill-
climbing terms where the ijth ncuron is encouraged to fire il the neuron has
conflicts.

The reader might associate with the N-queen problem from the crossbar switch
problem since they are very similar to each other except the diagonal constraints in
N-queen problems. Eq. (1.8) with the hill-climbing term in Eq. (1.9) is exactly
equivalent to Eq. (2.1) after removing B-term (diagonal terms) from Eq. (1.8). In
other words, the crossbar switch scheduling problem is considered as N-rook problem
where a rook commands horizontally and vertically. The positions of the rooks are
equivalent to the state of the traffic matrix. The goal of the N x N crossbar switch
scheduling problem is to place N mutually nonattacking rooks on an N x N
chessboard. The maximum number of rooks is given by N2.

The simulator has been developed on a Macintosh SE/30 and a DEC3100
workstation. Remember that the simulator can be easily implemented by Program]1,
Program2, or Program3 as shown in Chapter 1. The demonstrated simulator here is
completely based on Program2 in Fig. 1-7 except the input/output function where
the hysteresis McCulloch-Pitts neuron model is used. The simulator is to simulate
the synchronous parallel neural network model. The motion equation in Eq. (2.1) is
inserted in Program2. Fig. 2-2 shows the relationship between the average number of
iteration steps, the problem size, and the band size of hysteresis. The hysteresis band
size is given by the hysteresis band size=|UTPI=ILTPl. When no hysteresis is given
to each neuron, it usually takes more than 5000 iteration steps or does not converge
to the global minimum at all.
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2.4 EXERCISES

1. Generate several traffic matrices with different densities and observe the behavior of
the system by changing the hysteresis band size with or without the hill-climbing
term.

2. Compare the solution quality and the computation time of the proposed algorithm
with that of the best known algorithm.

3. Build a simulator to simulate the synchronous parallel N x N crossbar model as if
P x Q processing elements are used on a parallel machine for P, Q<N.

4, Discuss why hysteresis in the neuron model is able to suppress the oscillatory
behavior in neural dynamics.

5. Survey other crossbar switch problems and solve one of their problems.



Chapter 3

FOUR-COLORING AND K-COLORABILITY PROBLEMS

The computational energy is presented for solving a four-coloring map problem, The
map-coloring problem is defined that one wants to color the regions of a map in such
a way that no two adjacent regions (that is, regions sharing some common boundary)
are of the same color. This Chapter presents a neural network parallel algorithm
based on the McCulloch-Pitts binary neuron model. A 4 x n neural array is used to
color a map of n regions where each neuron as a processing element performs the
proposed motion equation. The capability of the proposed system is demonstrated
through a large number of simulation runs. The parallel algorithm is modified for
solving the k-colorability problem. This Chapter is based on our paper published in
IEEE Transactions on Circuits and Systems (Takefuji and Lee 1991)

3.1 INTRODUCTION

A map maker colors adjacent countries with different colors so that they may be
easily distinguished. This is not a problem as long as one has a large number of
colors. However it is more difficult with a constraint that one must use the
minimum number of colors required for a given map. It is still easy to color a map
with a small number of regions. In the early 1850's Francis Guthriec was interested in
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Fig. 3-1 Nine-region map and 4-coloring

12 3 456789

red 1
yellow 2
blue 3
green 4

Fig. 3-2 Neural representation for 4-coloring map in Fig. 3-1

12 34567809

O O~ o U L W B e

Fig. 3-3 Adjacency matrix of the map in Fig. 3-1
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Fig. 3-5 (b) The convergence of the 48-state US map neural network to a four-
coloring solution. This shows the intermediate state of 192 neurons afier the tenth
iteration.
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Fig. 3-5 (c) The convergence of the 48-state US map neural network to a four-
coloring solution. This shows the intermediate state of 192 ncurons after the
twentieth iteration,
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Fig. 3-5 (d) The convergence of the 48-state US map neural network to a four-
coloring solution. This shows the final state of 192 neurons after the thirty fifth
iteration,
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Fig. 3-6 One of the solutions



Fig. 3-6 depicts the solution which is decoded from the final state of 192 neurons in
Fig. 3-5d. Fig. 3-7 describes one of the solutions for a 210-country map four-
coloring problem where the problem is taken from the example of Appel and Haken's
experiments. The state of the system always converged to the global minimum as far
as we have observed through more than one thousand simulation runs. Fig. 3-8
shows the relationship between the frequency and the number of iteration steps using
several hundred simulation runs in the 210-country map problem. The average
number of iteration steps is 820.

Fig. 3-7 One of the solutions for the 210-country map problem
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frequency

500 1000 1500 2000 2500
the number of iteration steps
Fig. 3-8 Relationship between the frequency and the number of iteration steps
in the 210-country map coloring problem

Fig. 3-9 shows one of the solutions for a 430-country map problem. Fig. 3-10
depicts the frequency versus the number of iteration steps using several hundred
simulation runs for the 430-country map problem. The average number of iteration
steps is 1000. Fig. 3-8 and Fig. 3-10 indicate that the problem size does not strongly
influence the number of iteration steps to converge to the global minimum.,

Through more than one thousand sets of simulation runs we have observed that
the problem size does not strongly influence the number of iteration steps to
converge to the global minimum. The proposed scaling method for the coefficients in
the motion equation is quite effective which allows the state of the system to escape
from the local minimum and to converge to the global minimum.
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Fig. 3-10 Relationship between the frequency and the number of iteration steps
in the 430-country map coloring problem
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Chapter 4

GRAPH PLANARIZATION PROBLEMS

In this Chapter a near-optimum parallel planarization algorithm is introduced. The
proposed system composed of an N x N neural network array not only generates a
near maximal planar subgraph from a nonplanar graph or a planar graph but also
embeds the subgraph on a single plane within O(1) time. The algorithm can be used
in designing printed circuit boards and routing very large scale integrated (VLSI)
circuits. This Chapter is based on a paper published in Science (Takefuji and Lee
1989).

4.1 INTRODUCTION

Maximal planarization of a planar or nonplanar graph is an important problem in
designing printed circuit boards and routing VLSI circuits. A graph is planar if it can
be drawn on a single plane with no two edges crossing each other except at their end
vertices. If a given circuit is planar, it can be wired on a single layer, If a given
circuit is nonplanar, we would like to maximize the number of edges to be planarized
and minimize the number of edges to be removed from a nonplanar graph. To yield a
maximal planar subgraph from a nonplanar graph is an NP-complete problem (Garey
and Johnson 1979).

Two tasks must be accomplished to solving the graph planarization problem.
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Fig. 4-2 Single-row representation of the graph in Fig. 4-1d

There are two kinds of forces performing in the artificial neural network;
excitatory and inhibitory forces. In the graph planarization problem the excitatory
force means that if an edge (i,j) exists in a given graph then the ijth neuron to
represent embedding the connection line in a plane is encouraged to fire. The
inhibitory force means that the neurons which violate the two-edge-crossing

condition are discouraged to fire. The two-edge-crossing violation condition is
expressed by the following:

If Vup;,=1 and (I<i<m<j or i<l<j<m) then the ijth up-neuron should not be fired.
In other words, ‘U’upij should not be 1. If Vdown;, =1 and (I<i<m<j or i<i<j<m)
then Vdnwnij should not be 1. Fig. 4-3 describes the edge-violation conditions for
Vup;; and Vdown;;. The necessary and sufficient conditions of our violation
conditions are given by the concise functions:

Z Z f(1,i,m)f(i,m,j)Vupn for Vup;; neuron is shown in Fig. 4-3a where the
! lfm
function f(L,M,R) is 1 if L<M<R, 0 otherwise.
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Fig. 4-5 Maximal planar subgraph by Jayakumar

We have developed the simulator based on Program?2 as discussed in Chapter 1.4
in Fig. 1-8. First we solved the same nonplanar graph problem as shown in Fig. 4-4.
When the coefficients A=2 and B=1, the unit time At=10"> were used for Eq. (4-1)
and (4-2), and the initial values of Uupij(t} and Udnwnij{l} where i=1,....N and
j=1,...,N were randomized in the range of -1/10000 to 0, the state of our system
converged to the global minimum in the 14th iteration, Fig. 4-6a and 4-6b describe
the state of the system at the first and fourteenth iteration. Squares in the upper and
the lower triangle indicate vupij and vduwnij respectively. The linear dimension of

each rectangle is proportional to the value of AUyp;i, AUgownij» Uupij» Udownij»
vupij' and Vdownij- Black and white rectangles indicate positive and negative values
respectively. Fig. 4-6a shows the intermediate state of 44 neurons after the first
iteration where 7 edges are embedded but some edges intersect each other. Fig. 4-6b
shows the final state of 44 neurons after the fourteenth iteration where 20 edges are
embedded and no edges intersect each other. Our simulator discovered that the new
maximal planar subgraph contains 20 edges instead of 19 edges, which contradicts to

the result of Jayakumar.
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Fig. 4-6 (a) The convergence of the graph planarization neural network to a solution

Fig. 4-7 shows the simulation result where several sets of the coefficients were
experimented. It indicates that either 20 edges or 19 edges out of 22 edges can be
consistently embedded in a single plane.
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Fig. 4-6 (b) The convergence of the graph planarization neural network to a solution



63

no action.

When A=B=1, C=5, Dt=10"%, and the initial values of Uup;;(1) and Udown;(0)
were randomized in a range of 0 to -1/2000, the state of the system converged 1o the
global minimum in the 206th iteration. The solution is depicted in Fig. 4-8c.
Several experiments using different sets of the coefficients showed the consistent .
improvement in the solutions. We also changed the numbering of state regions, our
system produced the planar subgraph with more than 100 edges in 20 iteration steps.

Fig. 4-8 (c) Solution of the graph in Fig. 4-8b

Based on the proposed parallel planarization algorithm we have developed the
simulator. The developed simulator is currently running on a Macintosh and on an
HP Apollo 3500 computer. Within O(1) time the algorithm not only generates a
near-optimum planar subgraph from the nonplanar or planar graph but also embeds
the subgraph on a plane. The algorithm can be implemented by an N x N 2-
dimensional neural network array where N is the number of vertices in a given graph.
Among N2 neurons only 2M neurons are used to obtain the solution where M is the
number of edges in the graph. Remember that the number of required neurons for M-
edge graph planarization is actually less than 2M where it is actually determined by
the number of intersected edges. As far as we have observed the behavior of the
simulator the state of the system always converges to the good solution within 20 or
30 iteration steps.



5.1 INTRODUCTION

The channel routing problem in a multi-layer channel is very important in automatic
layout design of VLSI circuits and printed circuit boards. A channecl consists of two
parallel, horizontal rows of points which are called terminals. The terminals are
placed at regular intervals and identify the columns of the channel. A net consists of a
set of terminals that must be interconnected through some routing paths. Some nets
may have a connection point at one or both ends (top and/or bottom) of the channel.
The channel routing problem is not only to route the given nets or interconnections
between the terminals on the multi-layer channel, but also to minimize the channel
area.

The sequential algorithms for the two-layer channel routing problems have been

extensively studied by many rescarchers (Hashimoto A. and Stcvens J. 1971)
(Kemnighan B. W., Schweikert D. G., and Persky G. 1973) (Deutsch D, N. 1976)

(Sahni S. and Bhau A. 1980) (LaPaugh A. S. 1980) (Dolev D. et al. 1981)
(Yoshimura T., and Kuh E. S. 1982) (Rivest R. L. and Fiduccia C. M. 1982) (Leong
H. W. and Liu C. L. 1983) (Burstein M. and Pelavin R. 1983a) (Burstein M. and
Pelavin R. 1983b) (Szymanski T. G. 1985) (Reed J., Sangiovanni-Vincentelli A.,
and Santomauro M. 1985) (Leong H. W., Wong D. F., and Liu C. L. 1985)
(Joobbani R. and Siewiorek D. P. 1985). The existing algorithms have the following
common features. The routing paths consist of the horizontal segments which are
parallel to the terminals of the channel and the vertical segments. All the horizontal
segments of the routing paths are assigned on one layer and all the vertical segments
of them are assigned on another layer. The connections between the horizontal
segments and the vertical segments are made through the contact windows which are
called via holes. For the integrated circuits, typically the horizontal segments are
embedded on a metal layer while the vertical segments are embedded on a polysilicon
and/or diffusion layer. Any two routing paths on the same layer cannot be placed
within some distance of each other which is called separation condition. For
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convenience, a unit grid is superimposed on the channel where the size of one unit
satisfies the separation condition and all the terminals are located at the grid points.
All the routing paths on the channel must follow the grid lines. The horizontal
segments are called tracks and the vertical segments are called columns. In this
model, the separation condition is that any two nets must be embedded neither on the
same track nor on the same column if they overlap there, which is called overlapping
condition. When the width of the channel is fixed, minimizing the channel area is
equivalent to minimizing the number of required tracks where all the given nets must
be embedded.

In some sequential algorithms, doglegging is introduced where a routing path of
a net is split into more than two horizontal segments on different tracks (Deutsch D.
N. 1976) (Yoshimura T. and Kuh E. S. 1982) (Rivest R. L. and Fiduccia C. M.
1982) (Leong H. W. and Liu C. L. 1983) (Burstein M. and Pclavin R. 1983a)
(Burstein M. and Pelavin R. 1983b) (Szymanski T. G. 1985) (Reed J., Sangiovanni-
Vincentelli A., and Santomauro M. 1985) (Leong H. W., Wong D. F,, and Liu C.
L. 1985) (Joobbani R. and Siewiorek D. P. 1985). Doglegging is sometimes
effective to reduce the number of tracks of the channel and to solve the cyclic
conflict. The cyclic conflict occurs when one net interconnects a top terminal on the
i-th column with a bottom terminal on the j-th column while another net
interconnects a bottom terminal on the i-th column with a top terminal on the j-th
column, Note that a top terminal means a terminal at the top end of a channel and a
bottom terminal means a terminal at the bottom end of a channcl. However, this
cyclic conflict occurs infrequently and it can often be avoided by rearranging the
terminal placement. Doglegging requires additional via holes which reduce the
reliability of the VLSI system and increase the manufacturing cost. It is desirable
either to reduce the number of dogleggs or to eliminate dogleggs completely for the
practical use.

To further reduce the channel area, several sequential algorithms for two-layer-
and-over-the-cell channel routing problems (Deutsch D. N, and P. Glick 1980)
(Krohn H. E. 1983) (Shiraishi Y. and J. Sakemi J. 1987) (Gudmundsson G. and
Ntafos S. 1987) (Cong J. and Liu C. L. 1988) (Cong J. and Liu C. L. 1990) and for
three-layer channel routing problems have been also proposed (Chen Y. K. and M. L.
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#1 net (T2,TS) is assigned on the second track of the first two-layer channel and the
#2 net (B1,B6) is assigned on the first track of the second two-layer channel, and so
on. Note that the two-layer channel means a pair of two layers for the horizontal
segments and vertical segments. Fig. 5-1c shows the routing solution corresponding

to Fig. 5-1b.
13t Two-Layer Channel ]_IL
—— -
2nd Two-Layer Channel LJI:}]L 1 ]
—

Fig. 5-1 (c) The routing solution corresponding to Fig. 5-1b

Each net must satisfy the separation conditions, in other words, any two different
nets must not violate the overlapping conditions. Fig. 5-2 shows the overlapping
conditions for the horizontal segments of the nets where head, indicates the left-most
column number of the i-th net and tail; indicates the right-most column number of
the i-th net. The horizontal overlapping conditions for the i-th-net-j-th-track-k-th-
layer processing element are given by:

n n
2 Vot D, Vpik (52)
p=1 p=1
p#i p#i

head;<head,<tail; head,<head;<tail,

This horizontal condition is nonzero if the horizontal segments of the other nets
overlap the horizontal segment of the i-th net on the j-th track of the k-th layer.
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Overlapping Condition : j=q

top terminal of channel
vertical segment of the i-th net
q-th track
j~th track *

vertical segment of the p-th net

botiom terminal of channel

©p erminal of channel O VeraPPing Condition 1j<gq

vertical segment of the p-th net

j-th track

0-th track vertical segment of the i-th net

bottom terminal of channel

Fig 5-3 Overlapping conditions for vertical segments

The termination condition is given by: If Vijk(0=1and ﬁuijk(l)dil for i=1,...,n,



Table 5-1 Comparisons of track numbers with other no-doglegging routers

problem # number of nets solutions solutions by solutions by

Yoshimurs & K.u11 Chen & Liu
the example 1 21 3 12 7
the example 3a 45 4 15 8
the example 3b 97 9 17 10
the example 3¢ 4 5 18 9
the example 40 S5 S 17 13
the example 5 61 5 20 10
dﬂﬂcnh-n.::'h 72 7 28 23

79
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Fig. 5-8 Eight-layer solution of Deutsch's difficult example

=

Table 5-3 Track numbers in 4-10 layer solutions of Deutsch's difficult example

Hmu! Number of
4 11
6 7
8 5
10 4

This Chapter proposes the parallel algorithm for the four-layer channel routing



Chapter 6

RNA SECONDARY STRUCTURE PREDICTION

In this Chapter two neural network models are used for solving RNA secondary
structure prediction problems. One is for solving the maximum independent set
problem and is slightly modified for predicting the RNA secondary structure. The
other is modified from the graph planarization algorithm discussed in Chapter 4 and it
takes advantage of molecular thermodynamics using a part of Tinoco’s model. Both
simulators were developed on a Macintosh machine, an HP Apollo 3500
workstation, and DEC 3100 workstations. A large number of simulation runs have
been performed to test the proposed parallel algorithms and to observe the behavior of
the proposed system. The simulation results demonstrated that the proposed parallel
algorithms are promising and worthwhile for practical use. This Chapier is based on
a paper published in IEEE Trans. on Neural Networks (Takefuji et al 1990b), a paper
published in Biological Cybemetics (Takefuji, Lin, and Lee 1990a), and a paper
published in Journal of Intelligent Manufacturing (Takefuji 1991).

6.1 INTRODUCTION

This Chapter first introduces a parallel algorithm for finding a near-maximum
independent set of a circle graph within several hundred iteration steps. The proposed
algorithm is modified for predicting the secondary structure of ribonucleic acids
(RNA) where the circle graph is very suited for computing the secondary structure.
Non-intersected edges in the circle graph provides information on the base pairs for
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set of a circle graph but also predicts the secondary structure of ribonucleic acids. It
requires n processing elements where n is the number of edges in the circle graph or
the number of possible base pairs. Our simulator based on the proposed algorithm
discovered the new structures in a sequence of 38 bases, a sequence of 55 bases, and a
sequence of 359 bases from the potato spindle tuber viroid (PSTV), two of which are
more stable than the formerly proposed structures. The simulator was tested by
solving other problems.

We believe this is the first parallel/distributed processing attempt to solving
RNA secondary prediction problems. This Chapter presents the clear comparison
between the conventional RNA folding algorithms, the backpropagation algorithm
by Quan and Sejnowski (Quan and Sejnowski 1989) or by Holley and Karplus
(Holley and Karplus 1990), and our algorithm. Although the proposed algorithm is
parallel computing, the simulator is currently running on sequential machines
including a Macintosh machine, an HP Apollo 3500 computer and a DEC 3100
computer under Unix operating system. The state of the system can usually converge
to the near-optimum solution within about 500 iteration steps. The algorithm uses n
processing elements where each processing element performs the McCulloch-Pitts
binary neuron.

6.2 MAXIMUM INDEPENDENT SET PROBLEMS

An independent set in a graph is a set of vertices, no two of which are adjacent. A
maximum independent set is an independent set whose cardinality is the largest
among all independent sets of a graph. The problem of finding a maximum
independent set for arbitrary graphs is NP-complete (Karp 1972) (Garcy and Johnson

1979). Gavril developed a 9(n3} time algorithm for finding a near-maximum
independent set in a circle graph where n is the number of edges in the circle graph
(Gavril 1974). Supowit proposed an 0{112} time algorithm in the circle graph
(Supowit 1987). Hsu gave an 0{m4) time algorithm on planar perfcct graphs where
m is the number of vertices (Hsu 1988). Choukhmane (Choukhmane and Granco
1986) and Burns (Burns 1989) proposed an algorithm on cubic planar graphs. Masuda
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where dxfl if the xth edge and the yth edge intersect each other in the circle graph,
0 otherwise. Note that A and B are constant coefficients. Edge-intersection conditions
between the ith and the jth edges in the circle graph are given by:
head(i)<head(j)<tail(i)<tail(j) and head(j)<head(i)<tail(j)<tail(i) where tail(i) and
head(i) are two end vertices of the ith edge. Note that distance(i) is given by
distance(i)=minfhead(i) -tail(i), |n+head(i) -tail(i)) where tail(i)>head(i) is
always satisfied. The function h(x) is 1 if x=0, 0 otherwise.

The first term is the inhibitory force in order to remove the edges which intersect
with the ith edge in the circle graph. If the ith edge is removed from the circle graph,
the first term will not be activated at all, because the state of the ith neuron should be
V;=1. In order to keep the ith edge in the circle graph, the first term should not have
any edge-intersection violation. Whenever the ith edge have any edge-intersection
violation, it will be eventually removed from the circle graph. The last term is the
encouragement force to embed the ith edge in the circle graph. If the ith edge is
removed but does not intersect with any other edges, the last term will force the ith
neuron to be Vi-ﬂ. In other words, the ith edge is encouraged to exist in the circle
graph. Fig. 6-6a shows the circle graph with 50 vertices and 122 edges. One of the
solutions in Fig. 6-6a is shown in Fig. 6-6b.



G-C base pairs and A-U base pairs. The possible base-pair must also satisfy the
hairpin-loop constraint such as |head(i) -tail(i)}>3. Because Tinoco (Tinoco et al.
1971) stated that it is sterically impossible to organize the hairpin loop with less
than three bases. The circle graph is fed to the neural network simulator in order to
find the near-maximum independent set.

Our simulator was tested by solving several secondary structure prediction
problems in ribonucleic acids. In this Chapter three examples are only shown., A
sequence of 38 bases from residues 1118-1155 of E. coli 165 rRNA given by Stern
(Stern et al. 1988) was used. Fig. 6-7a shows the secondary structure proposed by
Stern where the strength of structure stability is computed based on Tinoco's stability
number (Tinoco et al. 1971). The stability number of the secondary structure in Fig.
6-7a is +7. Fig. 6-7b shows the circle graph with 38 vertices and 151 edges.
Remember that each edge represents a possible base-pairing.

¢ A A
G 28 29 - v
G - 2? 10 - C
C 25 2 A
C A
6 A

55
G = = ]
C 57 0O
C 19 s A
U 1 LI

17 \-: 2
; 16 "'h'lJr i!."f-':""y"ﬁiw *

G \f‘}%‘\:# PN ’gf [ \'fj‘ . » C
% LAY
C 14 ‘ 5 u
G G ]
A LI ol 7 u
C G
C 6 u U

Fig. 6-7 (b) Circle graph with 38 vertices and 151 edges
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Finally a sequence of 359 bases from the potato spindle tuber viroid (PSTV) was
used to verify our algorithm. Gross (Gross et al. 1978) proposed the secondary
structure of the PSTV where the stability number is +62. The circlc graph with 359
vertices and 1017 edges was generated where possible base pairs (i and j) were given
by the following condition: 350<i+j<370. The state of the system converged to the
solution in the 240th iteration step with A=1, B=0.01, and U;(0)=-5 for i=1,...,
1017, The simulation result was obtained when A=1, B=0.01, and small negative
random numbers are assigned to U;(0) for i=1,...,, 1017. The secondary structure
predicted by our algorithm is composed of 359 vertices and 128 cdges where the
stability number is +65. Sanger proposed another secondary structure of the PSTV
where the stability number is +64 (Sanger 1984). It indicates that our simulator
found the most stable structure of the PSTV. Our simulation result shows that
within about 500 iteration steps the state of the system can converge to the solution
in the PSTV secondary structure prediction problem. The details of the PSTV
experiment are depicted in (Takefuji 1991).

In this Section we have shown the parallel algorithm for the maximum
independent set problem which is modified for predicting the secondary structure of
ribonucleic acids. The algorithm uses n processing elements where n is the number
of edges in the circle graph or the number of possible base-pair in ribonucleic acids.
Our simulation result shows that the state of the system converges to the solution
within several hundred iteration steps. The simulator discovered the most stable
structures in a sequence of 38 bases and a sequence of 359 bases from the PSTV
within 500 iterations.

6.4 PLANARIZATION AND RNA STRUCTURE PREDICTION

The stability number for a given RNA secondary structure is the sum of the
contributions of the loops, bulges, and helices. The structure with the highest
number is the most stable, called optimal folding. The mathematical problem to
compute an optimal folding based on free-energy minimization is mapped onto a
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Fig. 6-10 (b) State of the system after the sixty-first iteration step
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Fig. 6-11 Secondary structure predicted by our algorithm
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Fig. 7-1 shows where the knight moves in an L-shape route. In a 3 x 4
chessboard knight's tour problem, 12 squares are numbered from left to right and
from top to bottom as shown in Fig. 7-2a. From #2 square there are three valid
moves: V; g, V5 g and Vj ; where two moves are only needed to find the
Hamiltonian circuit.

Fig. 7-2b shows the p(p-1)/2=66 neurons for this problem whecre the black
squares indicate their outputs are one's. Fig. 7-2b depicts the two closed loops as
shown in Fig. 7-2¢ which is not the Hamiltonian circuit. Unfortunately there is no
solution for the 3 x 4 knight's tour problem (17). In 1943 Fred. Schuh stated that the
number of squares has to be even which is necessary but not sufficient (17).
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Fig. 7-1 (a) The knight moves in an L-shape route
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Fig. 8-1 88 fault map problem with two spares per row and two spares per column

time sequential algorithms for this problem have been proposed in RRAM
applications (Tarr M., Boudreau D., and Murphy R. 1984), (Day J. R. 1985), (Kuo
S-Y. and Fuchs W. K. 1987), (Wey C-L. and Lombardi F. 1987), (Haddad R. W. and
A. T. Dahbura A, T. 1987), (Huang W. K., Shen Y-N,, and Lombardi F. 1990). In
1984, Tarr et al. proposed two algorithms ; the broadside approach and the repair-
most approach (Tarr M., Boudreau D., and Murphy R. 1984). The broadside approach
is to scan the memory and to replace each faulty cell with a spare memory per row or
a spare memory per column whichever is available where no optimization is
performed. The repair-most approach is to repeatedly repair the row or column which
has the most faulty cells. In 1985, Day proposed the fault-driven approach which is
to repair the faulty cells according to user-defined preferences (Day J. R. 1985). In
1987, Kuo and Fuchs proposed the branch-and-bound approach and the heuristic
polynomial time approximation approach (Kuo S-Y. and Fuchs W. K. 1987). In
1987, Wey and Lombardi proposed another approach which determines both
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Fig. 8-4 16 x 16 fault map problem with Ra=Ca=3
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Fig. 8-7 Relationship between the number of iteration steps and the frequency
for the 40 x 40 fault map problem

8.4 EXERCISES

1. Calculate the energy function E for the spare allocation problems from Egs. (8. 3)
and (8. 4).

2. Write a subroutine to generate a faulty cell pattern with a specified probability of a
faulty cell occurring.

3. Generate a faulty cell pattern and solve it with your simulator,

4, The proposed motion equations in Eqs. (8. 3) and (8. 4) find a spare allocation
pattern by using exact Ra spares per row and exact Ca spares per column. However,
it is actually sufficient to find a spare allocation pattern by using Ra or less spares
per row and Ca or less spares per column. How should the motion equations be
modified in order to satisfy this condition ?

5. Modify your simulator with the modified motion equations and run it. Summarize
the simulation results.
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encourages the exact matching patterns to remain while the first term is zero.
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Fig. 9-4 (a) The state of the system after the first iteration step
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Fig. 9-4 (b) The final state of the system after the second iteration step

A large number of simulation runs were performed with various length of texts
and patterns on Macintosh SE/30. Fig. 9-5 shows the simulation result of the text
length 100. The characters of the text and the pattern in Fig. 9-5 were randomly
generated. In Fig. 9-5, the pattern "cdac” is located at two places in the 100-length
text.

ebcdcaaabdbaecdacbbaaecceddadeacedebbbebbacebdecdece
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ecbdbaccdacaebbbbbedeceddecdecebebdedececcaaecabbdebe
| I | | | | 1
H1H 1

ME@- .

Fig. 9-5 (a) The state of the system after the first iteration step

noaon
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neural network array. The second term forces no two markers to be placed in the same
position on the checkerboard. The third term is always inhibitory which describes the
overlap violation between polyominoes where the ten violation functions for ten
different polyominoes: f(1), f(2), [(3), {(4), 1(5), (6), 1(7), £(8), f(9), and f(10) are
given by respectively:

11

(1=, (V'gikt+V'qjr1.6+V'qik+1+ V' g jk+2+ V' qj+1.k+2)
q=1
g#l
11

2=, (V'gik+V'qj+1.ktV'qjr1.k+1+ V' g je1,k42+ V' j42,k+2)
q=1
q#2
11

@=Y, (Vigik+V'qiks1+V'gjks2+V g js1.ke2+ Ve j+2.k+2)
q=1
q:t3
11

f(4)=z (V'gik+V'qgj+1.k+Vigjr2ktV'qjr1 ks1+V g j+1.k+2)
q=1
q=4
11

f(5}=z (Vigk+V'qj+1.x+V'qj+1, k-1 Vg j+1 k+1+ V'qj42.)
g=1
qQ#5
11
6=, (V'gi+V'q s 1.kt V'qjs2.k+V ' 431+ V'q jod k)
q=1
q#b
11
ff?)=2 (V'gix+V'qjr1.xt Vg jr1k-1+ Vg j42.k-1+V'q j+2,k-2)
g=1
q=7
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