Programmable USB power supply using TINY45 and MAX517 (8-bit DAC)
Yoshiyasu Takefuji, Ph.D. Professor
Keio University

5322 Endo, Fujisawa 2520816 JAPAN

In this article, the USB communication function using TINY45 (8-pin DIP) is implemented by open source software packages (libusb, cygwin, WinAVR, and AVR-USB) where TINY45 does not have the USB function. An open source tool called WinAVR is used to compile the target firmware program under Windows OS. Avr-usb is an open source USB protocol stack for firmware which can be compiled by GNU C compiler under WinAVR. Libusb is also an open source USB protocol stack for HOST PC which is used under cygwin on Windows OS in order to compile a USB application program. Using those open source software packages, USB1.1 or USB2.0 low speed function can be easily achieved without any USB chip. The size of the USB protocol stack for firmware embedded in TINY45 is about 2Kbyte. Therefore more than 2Kbytes is available in TINY45 for user programming. If TINY85 is used, you will have 6Kbytes space available for user programming. USB connector has four pins: +5V, GND, D- and D+. D- and D+ pins are used in TINY45 for USB communications and another two pins for XTAL1 and XTAL2 with 12MHz resonator. 1.5Mb/s stream data of USB can be decoded by the open source USB protocol stack of avr-usb package. Open source USB protocol stack provides us user friendly API where usb_control_msg and usbFunctionSetup functions are used for USB communications between HOST PC and TINY45. The whole circuit is built in a breadboard with a 1.5Kohm resistor for 5V pull-up of D- and two 68ohm serial resistors directly connected to PD0 and PD2 from D- and D+ respectively. The 3.3V CMOS voltage regulator is used and fed to TINY45. Since six pins (+5V, GND, D-, D+, XTAL1 and XTAL2) in TINY45 are used, two pins are left for MAX517 2-wire serial programming. MAX517 is a 2-wire 8-bit DA converter where the necessary commands must be supplied from TINY45 for DA conversion. Fig.1 shows the circuit diagram of programmable USB power supply. USB female connector can be custom-made for user friendly breadboard as shown in Fig.2. Fig. 6 shows the complete circuit.
Parts list

1. TINY45

2. MAX517

3. breadboard

4. 3.3V voltage regulator

5. 12MHz ceramic resonator

6. 1 x 1.5Kohm, 2 x 68ohm, 2 x 4.7Kohm resistors

7. USB female connector

Installed software packages on Windows OS
1. cygwin (gcc-core, gcc++, libusb and other necessary libraries)

Download the following setup file. And double-click the setup file to install the necessary packages.

http://www.cygwin.com/setup.exe
2. WinAVR

Download the latest WinAVR-xxx-install.exe file. And double-click the downloaded installation file.

http://winavr.sourceforge.net/download.html
Detailed Cygwin installation

1. Double-click setup.exe on Windows OS.
2. Select root install directory. In my case, c:\cygwin is given.

3. Choose Direct Connection.

4. Choose the nearest site from the list.

5. Select the necessary packages for your system. At least you need to install gcc-core, gcc++, and libusb.
[image: image1.jpg]vee
B
o
2V

M o ——0] %
™30

i

N oo
I™a T
. 3u
foserd Fedesar Lo ™
1.3 i Crores
| la LT
2 T ees wec) e X
3 s - - forrar
S friees
uss i Sliraz mrsosre: [S5600%
e oot T T 2zer [H{END Mos1 PER |2
2
oo i

&

pxs 17

Fig.1 Circuit diagram of programmable USB power supply
[image: image10.jpg]

 [image: image2.jpg]

Fig.2 USB female connector for breadboard
USB communications

USB 2.0 has three communication types: 1.5Mbps (low speed), 12Mbps (full speed), and 480Mbps (high speed). In this article 1.5Mbps low speed communication can be established using TINY45 with 12MHz ceramic resonator without USB chip. Open source software protocol stack can take care of NRZI (Non-Return-to-Zero Inverted) encoding and decoding and bit stuffing for synchronization. The conventional USB chip is to function NRZI encoding/decoding with automated bit stuffing. In the bit stuffing technique, each time a series of 5 consecutive ‘0’ bits are transmitted, a ‘1’ bit will be automatically added to force a transition. In this article, usb_control_msg and usbFunctionSetup functions are used for USB communications. ‘usb_control_msg’ is used for HOST PC USB communications. ‘usbFunctionSetup’ is used for TINY45 USB communications.
Firmware

Firmware is quite simple since the open source AVR-USB protocol stack is used. In this firmware, usbFunctionSetup among the USB protocol stack is used where the user friendly usbFunctionSetup function can send/receive data via USB between HOST PC and TINY45. Since usbFunctionRead and usbFunctionWrite are not used in this article, the details of those functions are described at:

http://www.obdev.at/products/avrusb/index.html
In AVR-USB, usbconfig.h plays a key role for firmware configuration where usb configuration port is defined as follows:
/* usbconfig.h */

#define
USB_CFG_IOPORT

PORTB

/* This is the port where the USB bus is connected. When you configure it to

 * "PORTB", the registers PORTB, PINB (=PORTB+2) and DDRB (=PORTB+1) will be

 * used.

 */

#define
USB_CFG_DMINUS_BIT

0

/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.

 * This MUST be bit 0. All other values will result in a compile error!

 */

#define
USB_CFG_DPLUS_BIT

2

/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.

 * This may be any bit in the port. Please note that D+ must also be connected

 * to interrupt pin INT0!

 */

In usbconfig.h, device descriptions are defined as follows:

#define
USB_CFG_VENDOR_ID

0x84, 0x13

#define
USB_CFG_DEVICE_ID

0x88, 0x88

#define
USB_CFG_DEVICE_VERSION
0x00, 0x01

#define
USB_CFG_VENDOR_NAME

'D', 'e', 'v', 'D', 'r', 'v'

#define
USB_CFG_VENDOR_NAME_LEN
6

/* These two values define the vendor name returned by the USB device. The name

 * must be given as a list of characters under single quotes. The characters

 * are interpreted as Unicode (UTF-16) entities.

 * If you don't want a vendor name string, undefine these macros.

 */

#define
USB_CFG_DEVICE_NAME

'U', 'S', 'B', '-', 'K', 'O'

#define
USB_CFG_DEVICE_NAME_LEN
6

/* Same as above for the device name. If you don't want a device name, undefine

 * the macros.

 */

Disable usbFunctionWrite and usbFunctionRead in this example.

#define USB_CFG_IMPLEMENT_FN_WRITE

0

/* Set this to 1 if you want usbFunctionWrite() to be called for control-out

 * transfers. Set it to 0 if you don't need it and want to save a couple of

 * bytes.

 */

#define USB_CFG_IMPLEMENT_FN_READ

0

/* Set this to 1 if you need to send control replies which are generated

 * "on the fly" when usbFunctionRead() is called. If you only want to send

 * data from a static buffer, set it to 0 and return the data from

 * usbFunctionSetup(). This saves a couple of bytes.

 */

#define
USB_CFG_DEVICE_CLASS
0xff

#define
USB_CFG_DEVICE_SUBCLASS
0

#define
USB_CFG_INTERFACE_CLASS
0

#define
USB_CFG_INTERFACE_SUBCLASS
0

#define
USB_CFG_INTERFACE_PROTOCOL
0

Two byte data from the laptop are sent to the target USB device using “usbFunctionSetup” to initialize the MAX517 (2-wire 8-bit DA converter) and set the voltage of the DA output. The first byte data[1] is used for mode setting. The second byte data[2] is for setting the voltage of DA output. Pulse stream from TINY45 is provided to MAX517 for programming DA converter. WinAVR is used for compiling the described source program. PB1 and PB5 (reset) are used for MAX517 2-wire programming setting. Once reset-pin is setup by writing the lfuse and hfuse, the conventional serial programmer cannot rewrite the TINY45 flash memory any more since reset function is disabled. In order to reactive the reset-pin of TINY45 for further programming, the high voltage serial programming must be used.
To compile the source program, type “make“ on cygwin Window or execute “Make All” on ProgrammersNotePad of WinAVR. After successful make operation, “da.hex” file should be generated. “da.hex” file is used to write the TINY45 flash memory using the program writer. Modify WRITER=xxx in Makefile according to “your own program writer”.
Fuse low byte should be 0xef where default is 0x62. Fuse high byte is written as 0x5f where default is 0xdf.
To write fuses, make lfuse and make hfuse on cygwin windows.

/* Programmable USB power supply using TINY45 and MAX517 */

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <avr/wdt.h>

#include "usbdrv.h"

void delay(unsigned int p)

{ unsigned char i, j;
 //one loop is 3.8us with 12MHz

 for(i=0;i<p;i++) for(j=0;j<10;j++);

}

void pulse(unsigned char data)

{ if((data & 0x01)==0){PORTB = 0x00; }
//SDA=0

 else {PORTB = 0x02; }

//SDA=1

delay(1);
PORTB = PORTB | 0x20;

//SCL=1

delay(1);
PORTB = PORTB & 0x02;
//SCL=0

delay(1);
}

void start_strm()

{ PORTB = 0x20; //SDA=0

 delay(1);
PORTB= 0x00;
delay(1);
}

void stop_strm()

{ PORTB = 0x20;

//SCL=1

 delay(1);
PORTB = 0x22;
//SDA=1

 delay(1);
}

void ack_strm()

{ PORTB = 0x00;

//SDA=0

 delay(1);
PORTB = 0x20;
//SCL=1

 delay(1);
PORTB = 0x00;
//SCL=0

 delay(1);
}

/*-------------generate pulse stream---------------*/

void pulse_strm(unsigned char sda)

{ unsigned char i,ret;

 for(i=0;i<8;i++){ret=(sda>>(7-i)); pulse(ret); } }

uchar usbFunctionSetup(uchar data[3])

{ static uchar replybuf[1];

usbMsgPtr = replybuf;

 if(data[1] == 0){

replybuf[0]=55;

start_strm();
pulse_strm(0x5E);
//01011110 AD1=AD0=1

ack_strm();
pulse_strm(0x00);
//00000000 RST=PD=A0=0

ack_strm();
pulse_strm(data[2]);
// data[2] is for voltage

ack_strm();
stop_strm(); }

 else if(data[1] == 1){

replybuf[0]=11;}

 else if(data[1] == 2) {

replybuf[0]=22;}

return 1;
}

int main(void)

{ DDRB = 0x22;
// 0010 0010 PB1=SDA and PB5=SCL are output

 PORTB = 0x22;
//SDA=SCL=1

 usbInit();

 sei();

 for(;;){
usbPoll();
}

 return 0;
}

/****************************end of program ******************************/
MAX517 (DAC) programming
MAX517 (8pin DIP) is an 8-bit DA converter where two-wire programming is needed to set analog out0. Three bytes (slave address byte, command byte, and output byte) must be sent to MAX517 to set the analog out0.
[image: image3.jpg]

[image: image4.emf]
Fig. 3 MAX517 programming timing chart
As shown in Fig. 1, AD1=AD0=1 makes 01011110 as slave address byte. The command byte becomes 00000000. Output byte is given by data[2] with a range of 0 to 255 which is equivalent to the value i of usb_control_msg function.
Analog output can be determined by:

[image: image5.wmf]÷

ø

ö

ç

è

æ

256

]

2

[

0

data

V

ref

.
[image: image6.wmf]
Since as shown in Fig.1 REF0 pin is connected to +5V, the DAC resolution is 0.0195V. Therefore, the analog output should be in a range of 0V to 4.98V. Fig. 4 shows the simplified DAC diagram.
[image: image7.emf]
Fig. 4 Simplified DAC diagram of MAX517
Makefile for Firmware
Makefile is used to generate da.hex file which is written into TINY45 flash memory.

/************************Makefile for TINY45 ****************************/

TARGET = attiny45

WRITER = usbasp

COMPILE = avr-gcc -Wall -O2 -Iusbdrv -I. -mmcu=$(TARGET) # -DDEBUG_LEVEL=2

OBJECTS = usbdrv/usbdrv.o usbdrv/usbdrvasm.o da.o

all:
da.hex

.c.o:

$(COMPILE) -c $< -o $@

.S.o:

$(COMPILE) -x assembler-with-cpp -c $< -o $@

.c.s:

$(COMPILE) -S $< -o $@

clean:

rm -f da.hex da.lst da.obj da.cof da.list da.map da.eep.hex da.bin *.o da.s usbdrv/*.o

da.bin:
$(OBJECTS)

$(COMPILE) -o da.bin $(OBJECTS) -Wl,-Map,da.map

da.hex:
da.bin

rm -f da.hex da.eep.hex

avr-objcopy -j .text -j .data -O ihex da.bin da.hex

cpp:

$(COMPILE) -E da.c

avrdude:

avrdude -c $(WRITER) -p $(TARGET) -U flash:w:da.hex

lfuse:

avrdude -c $(WRITER) -p $(TARGET) -u -U lfuse:w:0xef:m

hfuse:

avrdude -c $(WRITER) -p $(TARGET) -u -U hfuse:w:0x5f:m

Fuse low byte:default 0x62

0xef = 1 1 1 0 1 1 1 1

^ ^ \ / \--+--/

| | | +------- CKSEL 3..0 (external >8M crystal)

| | +--------------- SUT 1..0 (crystal osc, BOD enabled)

| +------------------ CKOUT

+-------------------- CKDIV8

#Fuse high byte:default 0xdf

#0x5f= 0 1 0 1 1 1 1 1

/*****************************End of Makefile *****************************/

Host Application Software

Libusb-win32 is an open source USB protocol stack library for Windows OS. There are two important functions: usbOpenDevice and usb_control_msg in this application. usbOpenDevice is a function to open the USB device in order to ensure the target VendorID (VID) and ProductID (PID). VID and PID are our unique commercial IDs where VID and PID in this article are allowed to use for your personal use. ‘usb_control_msg’ is a user friendly function in the libusb protocol stack package. ‘usb_control_msg’ is used to send and receive the data via USB between HOST PC and TINY45 device. Two important parameters (mode and i) via usb_control_msg on host application are transferred to two parameters (data[1] and data[2]) via usbFunctionSetup on firmware. The parameter mapping between usb_control_msg on HOST PC software and usbFunctionSetup on TINY45 firmware is described in Fig. 5.

[image: image8]
 Fig. 5 Parameters mapping in HOST PC, TINY45, and MAX517

In order to generate the application program called volt.exe,
type “gcc volt.c –lusb –o volt” on cygwin Window.
/*Host Application Program to control the DA converter via TINY45 USB */

#include <usb.h>

#include <stdio.h>

#include <string.h>

unsigned short IDVendor= 0x1384;

/*VID must be changed. */

unsigned short IDProduct= 0x8888;

/*PID must be changed. */

static int usbOpenDevice(usb_dev_handle **device, int idvendor, int idproduct)

{

struct usb_bus *bus;

struct usb_device *dev;

usb_dev_handle *udh=NULL;

int retp, retm,errors;

char string[256];

usb_init();

usb_find_busses();

usb_find_devices();

for (bus = usb_busses; bus; bus = bus->next)

{

for (dev = bus->devices; dev; dev = dev->next)

{

udh=usb_open(dev);

retp = usb_get_string_simple(udh, dev->descriptor.iProduct, string, sizeof(string));

retm=usb_get_string_simple(udh, dev->descriptor.iManufacturer, string, sizeof(string));

if (retp > 0 && retm > 0)

if (idvendor==dev->descriptor.idVendor && idproduct==dev->descriptor.idProduct){ *device=udh;return errors=0;}

}

}

 usb_close(udh);return errors=1;

}

int main(int argc, char **argv)

{

usb_dev_handle *d=NULL;

unsigned char buffer[3];

int i, mode, ret;

char string[256];

if(argc <2)

{

printf("give the voltage value.\n");

exit(1);

}

i=floor(atof(argv[1])*51) ;

 if(i>255){printf("value must be between 0 and 5V\n"); exit(1);}

mode=0;

usb_init();

ret=usbOpenDevice(&d, IDVendor,IDProduct);

if(ret!=0){printf("usbOpenDevice failed\n"); return 0;}

ret=usb_control_msg(d, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_ENDPOINT_IN, mode, i, 0, (char *)buffer, sizeof(buffer), 5000);

//
printf("buffer %d \n", buffer[0]);

return 0;

}

Libusb protocol stack package
‘libusb’ is an open source project for Linux, FreeBSD, NetBSD, OpenBSD, Darwin, MacOS, and Windows operating system (Win98, WinME, Win2k, WinXP). The simple data transfer in libusb protocol stack package can be accomplished by using usb_control_msg function for small data transfer. ‘usb_bulk_write’ and ‘usb_bulk_read’ function can be used for transferring large data. Definitions of three functions are given as follows.
int usb_control_msg(usb_dev_handle *dev, int requesttype, int request,

 int value, int index, char *bytes, int size,

 int timeout);
int usb_bulk_write(usb_dev_handle *dev, int ep, char *bytes, int size, int timeout);

int usb_bulk_read(usb_dev_handle *dev, int ep, char *bytes, int size, int timeout);

Check the detailed definitions of all available ‘usblib’ functions at ‘/usr/include/usb.h’.
Host Device Driver Installation

When connecting the target USB device to HOST PC for the first time, hardware update wizard will ask you the new device driver. You need to install the new device driver. Follow the below instructions to generate the device driver and to install it with your own risk.
1. Stick your USB device to HOST PC.

Hardware update wizard will ask you a new device driver. Do nothing until step 5.
2. Double-click c:\cygwin\lib\inf-wizard.exe
3. Select 0x1384 and click Next button.

4. Click Next button and save a file as usb-ko.inf.

5. Select “install from a list or specific location” on hardware update wizard window.
6. Check the “Include this location in the search”

7. Click on the Browse button.

8. Browse to c:\cygwin\lib\libusb

9. Click on OK button to continue.

10. You will successfully install the generated device driver on your HOST PC.

‘libusb0.dll’ and ‘libusb0.sys’ are two important files for realizing HOST PC USB protocol stack.

Testing the USB device

When you can successfully generate volt.exe and write da.hex files in TINY45 flash memory with fuses setting,
Type “volt 2.5” on cygwin Window.

Measure the voltage at PIN1 of MAX517 by a voltage tester.

Conclusion

This article describes a simple programmable USB DA converter using TINY45 and MAX517 which can be used for programmable power supply. Since two-wire serial programming is used to set the DA data in MAX517, multiple channel DA converters can be easily implemented by MAX518 or MAX519.

[image: image9]
Fig. 6 Programmable USB power supply

where out(PIN1) of MAX517 generates the controlled voltage
data[2]

data[1]

usbFunctionSetup

usb_control_msg

 i

mode

TINY45

HOST PC

12MHz

ceramic

resonator

3.3V cmos

regulator

out

USB

MAX517

SCL

SDA

2-WIRE

GND

+5V

D+

D-

Remove the metal cap from connector

_1243421874.unknown

_1243421737.unknown

