“ SciencePark Corporation

“Nullification of Unknown Malicious Code Execution with Buffer Overflows”
(AOARD-03-4049)

Driverware IMMUNE

2005/05/01

SciencePark Corporation

SCIENCE PARK

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED

27 JUL 2006 Final Report (Technical) 04-11-2003 to 30-07-2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Nullification of Unknown M alicious Code Execution with Buffer FA520904P0085
Overflows

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Y oshiyasu Takefuji

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

K eio University,5322 Endo, Fujisawa,K anagawa 252-8520,JP,252-8520 REPORT NUMBER
AOARD-034049

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONY M(S)
The US Resarch Labolatory, AOARD/AFOSR, Unit 45002, APO, AP, AOARD/AFOSR
96337-5002
11. SPONSOR/MONITOR' S REPORT
NUMBER(S)
AOARD-034049

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thefinal report describesthe working mechanism of 2IMMUNE DRIVER? system. This system usesthe
functionsthat areregularly not used by | A32 process which maintains the highest market share at present
tointerrupt program when buffer overflow is generated by virus program.

15. SUBJECT TERMS
Computer Security Technology, Computer Operating Systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 37
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SciencePark Corporation

Contests
L. SUIMIIMATY oot oottt e et 3
2. Mandatory EnvIrOmmICI..........ooi i 3
Bt SHUCEUI, 1o onnsmemsmimise st 5556057 ST S SR 28 25 656 1 5 .08 05 S SR O S S R I 3
A, IMIECIAIISIN ..ot 4
4.1, Brigl FTOMIRE TSommmmmssoinsonoomsonsoni 535 544055 G0 55 55 f 38 5 9S50 SIS T A A B AG 4
4.2, INIEIAL PTOCESSITIZ ..ottt e 6
4.3. Detection of process generation @VEIIES..........ooiiiiiiiiiiiiii i 8
Ad, SHarting OF CEAEIIT .o v i s s 6 o 5 s S aeesmsmis s @ § 160 s e e 13
4.5, Branch sStruCtion PIOCESS ... i it ettt e e 15
4.6. In the case of CALL Instruction eXeCUtes.........oiiiiiiiiiiiit i 20
4.7. Inthe case of RET 1S action BXBOMIEE ..o ecinioses s 5 o sy v smmsss s sasis s & 23
4.8, Force process terIMINATION . .ooivvreiiiiiteeiiiiree et essotrr et a et ee e s st e st e e s nnrere s nabeeanes 27
49, To seta hook of threat SeneTating VETES. . .c...e v ssmsmsssins s e wsss s s 6 56055 5.6 5 28
4.10. About JMP ESP instruction...........ccoovviriiiniiiiiiie e T 30
D BOF B0t oot 31
T I 0 =t 01 (ol 6100 Lo Ve L — 31
5.2. BOF test of metamorphic coding type.........cccocoiiiiiiiiiii 31
6. Extension of IMMUNE SYSTEIN ... e 34
6.1. For Windows XP machine..........cccoooiiiiiiiiiiii e 34
T ROl BEHEEE s 5.0 0 5,20 550505 810505 0 S G0 5SS R G S 455 5 51,08 36
APPENUIX T SEUUPD Lo e 37
The component of The THOTTLC.. ... o it iommmmmemmmnsd e 5585 555 55 et 850 B SR B8 B85 b i e e 37

TSI LA IO .o 37

SciencePark Corporation

1. Summary
This paper describes the working mechanism of IMMUNE DRIVER. This system uses the

functions that are regularly not used function by [A32 process which maintains the highest

market share at present to interrupt program when buffer overflow generated by virus

program.

2. Mandatory Environment
CPU: Intel Pentium Pro or higher processor
*TA-32 Processor with processor instruction trace

0S: Microsoft Windows 2000 SPO

Development environment for IMUUNE system:
Microsoft Visual Studio 6.0 SP4

Compuware DriverStudio 2.7 or later

3. Structure

The following is the sketch of this system

Operating System

IMMUNE Driver

Stack Recorder

Divergent commands pjocessing

A A y

Instruction ||
Hardw are

Me mory Break
RET Instruction
CALL Instruction

IA32 Processor

Fig.3-1 Sketch of the system

SciencePark Corporation

4. Mechanism
4.1. Brief Flowing Chart
This system consists of five parts: [Initialization], [Process detection]. [Event registration],

[Tnstruction tracel, and [Process termination].

Initialize

!

Preparing of process
inspection

!

Registration of branch
Indructiontrace | *rtvc- Branch mstruction processing
1

(CALL. RET. IMP)

1
Event Start
Instruction processing
End P €

Instruct fon AL L FET
Processing RETxx, IMP
------ CALL. RET,
BufferOv erFlow?2 RETxx, IMP
Ye?
Process
termmat ion Process temmination

Fig. 4-1 Brief flowing chart of IMMUNE DRIVER

(1) TInitialization

The process works on the starting of IMMUNE driver.

SciencePark Corporation

(2) Process detection

The preparatory works of detection the buffer overflow before the target process generated.

(3) Registration of branch instruction trace event
Right after the target process generated. the virus execute buffer overflow code by branch
instruction. That is why the events of branch instruction should be monitored, of which only

the buffer overflow caused by the instruction of CALL/RET/RIETxx are to be detected.

(4) Instruction trace
When the registered event occurs, the following methods are to be executed depending on

the branch instruction.

(D CALL instruction processing: Storing the return address of CALL instruction in our stack
recorder.

2) RET instruction processing: Compare the return addresses in stack recorder with the
current return addresses when CALL instruction executed. If they are not match. it is
considered that the return address was changed illegally. This is regarded as buffer

overflow, which will forcefully terminate the process.

(5) Process termination

The process that caused buffer overflow is terminated forcibly.

42.

(1)

(2)

Initial processing

Flow chart of initialization

SciencePark Corporation

Thread generating cvent - -

Event Start

(1.9)

Yes

Y

Specified a process
(Read fromregistry)

'

Registry a callback function
for generating the process

;

Initialize Stack Recorder

!

Set hook for generating

the thread event

o

Registry a callback function for genemting the process

vexoee s Detection of the process gener
1

No

) (4.8)

Event Start

Is ita target process?

Instruction Precessing

infornution

Fig. 4-2 Initial processing

Set process name (by initial parameter)

Specify the process name of monitored buffer overflow from registry.

Register a process generation callback function

To register a process generation callback function, call the PsSetLoadlmageNotifyRoutine(Q

function provided by Windows.

Prototype of callback function is defined as following

void LoadlmageNotifyRoutine(
PUNICODE_STRING
HANDLE Processld,
PIMAGE_INFO Imagelnfo
)

FulllmageName,

otma ._“rmlt

- --Save a process

SciencePark Corporation

(3) Initialize Stack recorder
It gives a room and is initialized in the stack recorder. The stack recorder is a buffer used to
trace the branch instruction while target process executes. Also. it dynamically gives a room in
stack recorder whenever sub thread of the specified process is generated. The stack recorder

structure is defined as

typedef struct _ASO_STACK_LIST{
LIST_ENTRY m_ListEntry;
ULONG Threadld;
ULONG *StackPointer;
LONG CurrentStackLocation;
}ASO_STACK_LIST, *PASO_STACK_LIST:

(4) Register thread creation event hooking (suitable for multiple threads)
It is to hook kernel API called NtCreateThread when the sub thread is being generated. For
hooking NtCreateThread. entry point of Int2E interrupt handler is replaced with IMMUNE

system.

IDTR idtr;
PIDTENTRY Oldt;
PIDTENTRY NIidt;

__asm SIDT idtr,

Oldt = (PIDTENTRY)MAKELONG(idtr.LowIDTbase, idtr.HilDTbase);
gOIdINT2EH_Handler = MAKELONG(OIdi[IGATEZ2E].OffsetLow, Oldt[IGATE2E].OffsetHigh);
Nidt = &(OIdt{IGATEZ2E]));

_asm{
CLI
LEA EAX, ASO_Hook_INT2EH
MOV EBX, Nidt;
MOV [EBX], AX
SHR EAX, 16
MOV [EBX+6], AX;
LIDT idtr
STI

SciencePark Corporation

4.3. Detection of process generation events
Monitoring starts at the beginning of process execution right after being generated. The target

process events are got through the following chart:

Process generating
event

Get start address of process

¥

Set a process detection of
astart point ofits execution

Set a breakpoint

'

Registry a handler of
branch instruction

Saving process ID

G e
4

(Return)

Fig. 4-3 Detection of process generation event

D Detection of process generation
The LoadlmageNotifyRoutine is called when any process generates. The function of

LoadImageNotifyRoutine is as following

@

To determine a target process
The FulllmageName (one of the arguments of LoadlmageNotifyRoutine) is used to distinguish

the target process's module name. If it is believed to be the target process, the process will go as

shown in @.

SciencePark Corporation

@ To obtain the process starting address

It gets the program starting address by EXE header the program file. It takes the following

codes to get the program starting address.

PVOID ImageBase = (PVOID)imagelnfo->ImageBase,;

MZ_HEADER *mz_Header = (MZ_HEADER *)imageBase;
MZ_NE *mz_ne = (MZ_NE *)((char *)imageBase + sizeof(MZ_HEADER));
IMAGE_NT_HEADERS *ImageNtHeaders =

(IMAGE_NT_HEADERS *)((char *)imageBase + mz_ne->ne_header);
char *EntryPoint =

(char *)((ULONG)Imagelnfo->ImageBase+

ImageNtHeaders->OptionalHeader.AddressOfEntryPoint);

SciencePark Corporation

@ Setting the detection of process execution starting
Setting a hardware break point in the process starting address got in above mentioned (3). Call
the trace callback function (ASO_IHook _INTO1I1) when the process starts. The following codes

are used for the registration

MOV EAX, KickStartAddress // Process start address
MOV DRO. EAX

MOV EAX, DR7

OR EAX, 0x00000000: /1 Set LENO = 00 (1Byte Length)

OR EAX., 0x00000000: /1 Set, RIWO0 = 00 (On Execution Only)
OR EAX, 0x00000200: I1'Set GE

OR EAX. 0x00000002: /I Enable GO

MOV DR7. EAX: Il Set DR7

SciencePark Corporation

® Setting the execution break point
To set hardware break point in execution entry point to be able to begin the trace as soon as the
program starts. Call the INTO1 handler when break point is hit during the execution of entry

point.

The following codes are used for the registration

MOV EAX, KickStartAddress // Entry Point (main0 address)
MOV DRO, EAX

MOV EAX. DR7

OR EAX, 0x00000000: Il Set, LENO = 00 (1Byte Length)

OR EAX, 0x00000000: 11 Set R/IWO = 00 (On Execution Only)
OR EAX, 0x00000200: Il Set GE

OR EAX, 0x00000002: /I Enable GO

MOV DR7, EAX: Il Set DR7

SciencePark Corporation

© Registration of branch instruction handler
To register the trace callback function (ASO_Hook INTO1H) ., Replace the IDT(Inferrupt
Descriptor Table) of 01H.

The [ollowing codes are used for the registration

IDTR idtr;
PIDTENTRY Oldt;
PIDTENTRY Nldt;

__asm{

SIDT idtr;

Oldt = (PIDTENTRY)MAKELONG idtr.LowIDTbase, idtr.HilDTbase):
gOIdINTO1H_Handler= MAKELONG(OIdt[IGATEO1].OffsetLow, Oldt[IGATE01].OffsetHigh):
Nidt = &(OIdt[IGATEOQ1]);
__asm{

LEA EAX, ASO_Hook_INTO1H// INTO1 Hook function

MOV EBX, Nidt;

MOV [EBX], AX

SHR EAX, 16

MOV [EBX+6], AX;

LIDT idtr

@ Saving of process ID

When starting, the process gets an ID from Windows. The ID is saved to distinguish the target

process when the event occurred by IA-32 branch instruction.

SciencePark Corporation

4. 4. Starting of tracing
When entry point of program is run, the INTO1 handler is called by pre-set break point. From this
moment. trace function turns active

The following codes are used for enabling trace function.

MOV EAX, DR6: 11 Get DR6 Register Value

/I Check MemoryBreak0 Flag

TEST EAX, 0x00000001 /I Check MemoryBreak0 bit
JNZ MEMORY_BREAK_BPO

MEMORY_BREAK_BPO:

MOV EAX., DRO

MOV gBreakAddress, EAX

XOR EAX, EAX
MOV DRO, EAX

MOV EAX, DR7
AND EAX, OxFFFFFFFD: /I Disable GO
MOV DR7, EAX

MOV EAX. DR6
AND EAX, OxFFFFFFFE /I Disable BO
MOV DR6, EAX

JMP MEMORY _BREAK _COMMON

4.5.

SciencePark Corporation

Branch instruction process

When the branch instruction is hit, it is to be processed as below:

(Event Start >

Yes

< MemoryBreak(?
Yes
< MemoryBreak1 ? P
Yes
< MemoryBreak2 ? P
Yes
MemoryBreaks3 ? >
- e
—— Yes Register branch instruction monitoring

handler. (the sub thread of the specified

< BreakSingleStep ?

process is generated)

(Return) .
To trace process

Fig. 4-4

Trace start,

O
!

Clear a trace flag of DR6

'

Get LastBranchFromlp (MSR=0x01DB)

.

Get executed instruction from LastBranchFromlp

Yes

Relative near CALL?

SciencePark Corporation

(0x[E8)

Q_

To CALL process

<Direct near/far CALL?
(0xFF)

_ Yes
Direct, far CALL?

Q_

To CALL or JMP process

(0x9A)

Yes

near RET?

Q

To CALL process

(0xC3)

Yes
far RET?

O_

To RET process

(0xCB)

No

O

To RET process

Yes

near RET with POP?

SciencePark Corporation

(0xC2)

, Yes
far RET with POP?

To RETN process

(0xCA)

No

CALL or JMP process start

Yes

CALL/2?

To RETN process

(0x10)

/

Yes
ALLI3? i

O

To CALL process

—
—

(0x18)

To CALL process

< JMP ESP?
(0x18)
ﬁ No

To JMP ESP process

SciencePark Corporation

During the branch instruction are executing in process, ASO_Hook INTO1H is called. Only the
instruction of CALL and RET that are necessary for IMMUNE system in handler distinguish

according the [ollowing codes.

[T DR6 <- 0x00000000
MOV EAX, DR6

AND EAX., OxFFFFBIFFF
MOV DR6, EAX

1 EDX:EAX <- LastBranchFromlIp
MOV ECX, 0x000001DB: // MSR = 0x01DB(LastBranchFromlIp)
RDMSR:

PUSH ES

MOV BX. 0x001B
MOV ES, BX

MOV EDX, EAX
MOV EAX, ES:[EAX]

POP ES

1

/I Branch on Instruction type

1

CMP AL, 0xES8 /I Relative near call
JZ CALL _FOUND

CMP AL, OxI'F /I Direct near/far call
J7Z CALLORJMP_FOUND

CMP AL, 0x9A /I Direct far call

J7Z CALL_FOUND

CMP AL, 0xC3 /I near RET
JZ RET_FOUND
CMP AL, 0xCB Il far RET

JZ RET_FOUND
CMP AL, 0xC2 /I near RET with POP

SciencePark Corporation

J7Z RETN_FOUND
CMP AL, 0xCA Il far RET with POP
JZ RETN_FOUND

JMP CALL_NOTFOUND

CALLORJMP_FOUND:

TEST AH, 0x10 II CALL/2
JNZ CALL_FOUND

TEST AH, 0x18 11 CALLI3
JNZ CALL_FOUND

CMP AH, 0xE4 II IMP ESP

JZ JMPESP_FOUND

JMP CALL_NOTFOUND

SciencePark Corporation

4.6. Inthe case of CALL instruction executes
When execution of CALL instruction is detected in target process, the return addresses are saved in

stack recorder according to the following flow chart

(CALL process start)

Set return address from stack recorder

v

Store return address to stack recorder

v

Reset. the instruction trace

!

(IRETD end)

SciencePark Corporation

(D When CALL instruction is executed, the original return address stored in stack area is got.

according the following codes.

CALL_FOUND:

PUSH ES

/I Get Stack segment (CS)

MOV ECX, EBP

ADDECX, +t4+4+4+4+4

MOV EAX, [ECX]

MOV ES, AX

/I Get Stack pointer

MOV ECX, EBP

ADDECX,+4+4+4+4

LES EDX, [ECX] /I Now EDX point to Stack Address
/I Get RetlP

MOV ECX, EDX

MOV AX, 0x001B /I User mode only

MOV ES, AX 1

MOV EDX, ES:[ECX] // Retrieve RetlP on Stack
/!

/I Now EDX point to RetIP on Stack

1

POP ES

SciencePark Corporation

@ The return address got from (1) is stored in stack recorder inside the IMMUNE system.

It is to be processed as following:
1 8

KeRaiselrgl(HIGH_LEVEL, &OldIrql);

PASO_STACK_LIST StackList = (PASO_STACK_LIST)gStackList[Threadld];

if (StackList == 0){
/[Error

lelse if (StackList->CurrentStackLocation > STACK_LIMIT){
StackList = NULL;

lelse if (StackList->CurrentStackLocation >= 0){
StackList->StackPointer[StackList->CurrentStackLocation] = ExpectedRetlp;
StackList->CurrentStackLocation ++;

}
KeLowerlrgl(Oldirql);

@ Reset the instruction trace. Because the instruction trace setting is effective until the branch

instruction is detected.

SciencePark Corporation

47. Inthe case of RET instruction executes
When execution of RET instruction is detected in target process, it is to follow the chart below to

check the overflow.

< RET vrocess start >

Get real return address

Different

(Detected the buffer overflow)

Compare return address of stack

ecorder same or different

Same . .
To process interruption

Reset the instruction trace

!

< IRETD End >

SciencePark Corporation

(D When RET instruction is executed, the real return address stored in stack area is got according

the following codes.

RET_FOUND:

PUSH ES

/I Get Stack segment (SS)
MOV ECX, EBP
ADDECX,+4+4+4+4+4
MOV EAX, [ECX]

MOV ES, AX

/l Get Stack pointer

MOV ECX, EBP
ADDECX, +4+4+4+4
MOV EAX, [ECX]

LES EDX, [ECX]

SUB EDX, +4
MOV ECX, EDX

MOV AX, 0x001B
MOV ES, AX
MOV EDX, ES:[ECX]

// Now EDX point to Stack Address

// Back 4Bytes from Current Stack Address

SciencePark Corporation

@ The real return address in stack area and the original return address stored during call

instruction executes are compared

KeRaiselrgl(HIGH_LEVEL, &OldIrgl);
PASO_STACK_LIST StackList = (PASO_STACK_LIST)gStackList[Threadld];
if (StackList == 0){
// Stack not found
telse if (StackList->CurrentStackLocation > 0){
StackList->CurrentStackLocation --;
ULONG ExpectedRetlp
= StackList->StackPointer[StackList->CurrentStackLocation];
StackList->StackPointer{StackList->CurrentStackLocation] = 0;
if (ExpectedRetlp != Tolp){
LONG j;
BOOLEAN StackFound = FALSE;
for (i = StackList->CurrentStackLocation; i >= 0; i --){
if (StackList->StackPointer[i] == Tolp){
LONG j;
for (j = i; j <= StackList->CurrentStackLocation; j++){
StackList->StackPointer{j] = 0;
}
StackList->CurrentStacklLocation = i;
StackFound = TRUE;

break;

}
if (1StackFound){

/I Not found
Terminate_VirusCode(Fromip, Tolp, ExpectedRetlp);

lelse{

DbgPrint(" llegal Stack Location¥n");

}
KeLowerlrgl(Oldirql);

SciencePark Corporation

@ When the return addresses are identical, it is believed to be the normal process and this process
is finished. When the addresses are not identical, 1t is believed that overflow occurs. That is

when the process of termination described in 4.7(Terminate VirusCode) will be executed.

(@ Reset the instruction trace.

SciencePark Corporation

4.8. Force process termination

@ The process will be forcefully terminated by the hidden illegal codes in executed instruction

address (real return address) according to RET instruction.

void __stdcall Terminate_VirusCode(ULONG Fromlp, ULONG Tolp)
{
IsDetected = TRUE;
/I Rewrite Fromip(Next instruction of JMP ESP) to INT3
__asm{
PUSH EAX
PUSH EDX

MOV AL, 0xCC //INT 3
MOV EDX, Fromlp
MOV SS:[EDX], AL

POP EDX
POP EAX

SciencePark Corporation

4.9. To set a hook of thread generating events
The sub thread is under monitoring as soon as it is created by target process. So, the system is able

to catch the event generated by sub thread.

[Event Start

Is it the target process ?

Set a start address of CreateThread()

!

Set a break point at the start address

v

Return

The API Createthread(is hooked when target thread is generated. Whenever sub thread is

generated, it starts to monitor the branch instruction same as main thread.

SciencePark Corporation

The following codes are used to set the hook of thread generating events (CreateThread().
KIRQL Oldlrgl;
KeRaiselrgl(HIGH_LEVEL, &Oldirqgl);

_asm{
PUSHAD
/I for CreateThread()
MOV EAX, EBP /I Current EBP
MOV EAX, [EAX] /I Previous EBP(ASO_Hook_INT2BH)
MOV EAX, [EAX] // Previous EBP(CreateThread)
ADD EAX, 0x10 /I Stack + 10H (IpStartAddress)
MOV EBX, [EAX] /I EBX <- Thread address

CMP EBX, Ox7800BE4A // if EBX == _beginthread's start_address (2K+SP0) then

JNZ SET_MEMORYBREAK

/ for _beginthread()

MOV EAX, EBP /I BI{ED EBP

MOV EAX, [EAX] // Previous EBP(ASO_Hook_INT2BH)
MOV EAX, [EAX] /I Previous EBP(CreateThread)

MOV EAX, [EAX] /I Previous EBP(_beginthread)

ADD EAX, 0x0C // Stack + OCH (start_address)

MOV EBX, [EAX] // EBX <- Thread address

SET_MEMORYBREAK:

PUSH EBX /I Param1
CALL InstaliNewInt0O1Handler
POPAD

SciencePark Corporation

4.10. About JMP ESP instruction

JMP ESP is necessary instruction to execute codes in stack area. as in the case of virus invaded
through network. The program codes in stack area can be invaded through buffer overflow. JMP
ESP instruction returns control of program codes. No matter the return address matches or not
with the call origin, it will be on the list of prohibition. Because DOS and Windows of early
versions use the way to run a program with limited memory. the program codes are created in stack

area. In recent years, OS doesn't use this way so it can also be prohibited.

JMP ESP process

Process interruption

IRETD End

SciencePark Corporation

5. BOF test

5.1. BOF sample codes test

We have a simple BOF test that SQL slammer attacking to non-patched Microsoft SQL Server2000
using an emulated program implemented slammer virus code. This emulated program,
sqlslammer.exe, force to execute notepad up to infinity when the program attack to non-patched
SQL Server, If you set enable for the immune system, the immune system can detect this attack,

and immediately kill the process of SQL Server.

5.2. BOF test of metamorphic coding type
Metamorphic coding will carry out the BOEF detection. This detection by old way of signal pattern

matching was quite hard. The metamorphic coding has generally three types

(1) Register replacement type
POP EDX
MOV EDI, 0008H
MOV ESI,EBP
MOV EAX 000DH
ADD EDX, O00S5FH
MOV EDX, [EDX]

MOV [ESI+EAX*0000CCC9,EBX]

POP EAX

MOV EDX,0008H
MOV EDX, EBP
MOV EDI, 000DH
ADD EAX, 005FH
MOV ESI, [EAX]

MOV [EDX+EDI*0000CCC9],EST

(2) Magic number exchanging type
MOV DWORD PTR [ESI] ,11000000H
MOVDWORD PTR
[ESTI+0004]7,110000FFH
MOV EDI,11000000H
MOV [ESI],EDI

POP EDI

SciencePark Corporation

PUSH EDX

MOV DH, 40

MOV EDX, 110000FFH
PUSH EEX

MOV ED¥, EBX

MOV [ESI+0004],EDX
MOV EDX,11000000H
MOV [ESI],EBX

POP EDX

PUSH ECX

MOV ECX, 11000000H
ADD ECX, 000000FFH

MOV [ESI+0004],ECX

(3) Control order changing type
INSTRUCTION A
INSTRUCTION B
INSTRUCTION C:
LABEL 2:
INSTRUCTION B
JMP
FAKE INSTRUCTIONS
LABEL 3:
INSTRUCTION C
START: :

LABEL 1:
INSTRUCTION A

JMP

FAKE INSTRUCTIONS

SciencePark Corporation

In the three cases showed above. there is signature change after linkage. IMMUNE system

successfully detected BOF and terminated the process since the buffer overflow generated in all the

three cases.

SciencePark Corporation

6. Extension of IMMUNE system

6.1. For Windows XP machine

This system is suitable for Microsoft Windows 2000. The following points should be taken care when
dealing with Windows XP.

@ Operation after process detection

In Windows XP. the notice cant be captured even though the breakpoints were set at the very

beginning of process. The following changes must be made.

__asm{
PUSHAD
MOV EAX, CRO;
PUSH EAX
AND EAX, ~(0x10000)
MOV CRO, EAX /I Remove specialized memory flag of reading
}
char *TaleOflmage = (char *)((ULONG)Imagelnfo->ImageBase + Imagelnfo->ImageSize - 32);

if ((TaleOflmage[5] == (char)0xCD)
&& (TaleOflmage[6] == (char)0x20)
&& (TaleOflmage[7] == (char)OxE9)){
/I Already patched
telse{
/I Replace the process

memcpy(TaleOflmage, EntryPoint, 5);

TaleOflmage[5] = (char)0xCD; 11 INTxx

TaleOflmage[6] = (char)0x20; /1 0x20

TaleOflmage[7] = (char)OxES; /I far JMP

*(ULONG *)&TaleOflmage[8] = (ULONG)EntryPoint - (ULONG)TaleOfimage - 7;
EntryPoint[0] = (char)0OxE9; /I far IMP

*(ULONG *)&EntryPoint[1] = (ULONG)TaleOflmage - (ULONG)EntryPoint - 5;

SciencePark Corporation

@ Detect the thread generating
The native AP1 call mode of processor supporting SYSENTER/SYSEXIT instruction is changed in
Windows XP. So. the old way of INT 2EH hook can't be used any more. Only the native API service

table replacement should be used.

KIRQL OldlLrql:
KeRaiselrql(ITIGI_LEVEL, &Oldlrql);

PServiceDescriptorTableEntry Table = &KeServiceDescriptorTable:
OldNtCreateThread = NTCREATETHREAD)Table->ServiceTableBasel0x35];

Table->ServiceTableBase[0x35] = (unsigned int)NewNtCreateThread:

KeLowerlrgl(Oldlrql):

SciencePark Corporation

7. References

1. Ruo Ando, Hideaki Miura, Yoshiyasu Takafuji, "Iile system driver filtering agensst metamorphic
viral coding", WSEAS TRANSACTIONS ON INFORMATIN SCIENCE AND APPLICATIONS.
Issue 4, Volume 1. October 2004, ISSN: 1790-0832.

2. Y.TAksfwji, K.shoji, H.Miura, T.Kawade, T.Nozaki, "Security strategy and a proposal of
driverware", JNSA 2003.

3. Yoshiyasu Takefuji, “Security Strategy and Management", Nikkei Pub., 2004/10/18, JSBN
486130024X, (Japanese). '

SciencePark Corporation

Appendix 1 Setup

The component of the module

mi\lame Remark

AntiStackOverflow.sys IMMUNE Driver

ASOT ace.exe IMMUNE GUI

IMMUNE .reg Registry file for starting IMMUNE Driver
Installation

1. Copy IMMUNE driver file

Copy AntiStackOverflow.sys to the directory of %SystemRoot%¥System32¥drivers

2. Create registry
Double click IMMUNE .reg to create a registry for starting the IMMUNE driver

3. Enable IMMUNE system

Restart Windows

4. Customize detecting target process
It's able to change the name of detecting target process by changing the value of the

following registry.

Key:
HKEY LOCAL MACHINE¥SYSTEM¥CurrentControlSet¥Services¥Antistackoverflo
wY¥Parameters

Value: AppName

The default value is sqlservr.exe

