
A Novel Approach to Secured and Central Logging Data
NGUYEN ANH QUYNH, YOSHIYASU TAKEFUJI

Graduate School of Media and Governance
Keio University

5322 Endoh, Fujisawa, 252-8520
JAPAN

Abstract: Logging data is valuable and important information to reveal the attacker's activities and recover broken
system. Unfortunately, once the attacker successfully penetrates a protected system, he never fails to either modify the
logging data, or even worse, delete them to cover his traces. To avoid such a tragedy, it is best to keep logging data in
another machine by forwarding them to a central logging server. However, this approach has a flaw: while transmitting
on network, data could be illegally sniffed or the traffic might be secretly redirected to a malicious machine. This paper
proposes a novel method named Xenlog to secure logging data for systems run on Xen virtual machine: the solution
does not use network stack to send data. Experimental and resulted tool proves that this approach is more secure than
the traditional solution, while logging process is far more effective (nearly 24 times faster) and more reliable.

Key-Words: Xen, Linux, secure logging, central logging, security attack, forensic analysis

1 Introduction
Nowadays intrusion detection systems are widely
used to detect security attacks, but still the most
hardened systems are penetrated. Once the attacker
breaks in, he will try to steal information, corrupt
valuable data and install Trojans, rootkits. Last but
not least, the wise attacker will never fail to cover his
traces, and logging data is the first priority then. The
reason is obvious: system logging data might has
important information to disclose the attacker’s
activities, so he will attempt to either modify the
logging data, or even delete all the information which
might be used to catch him.

Without correct, accurate and complete logging
information, forensic process will be much harder, or
even impossible. That is why keeping and secure
logging data is one of the most important things the
administrator must do.

Basically, there are two approaches to secure the
logging data, declared below. Unfortunately they all
have unpleasant flaws:
- The logging data is either encrypted or signed
before storing locally, like what Shamhain [1] does to
its log file, so the attacker will neither see the
ciphered data, nor modify it without the
administrator's aware. This solution sounds nice, but
there is still a problem: what if the attacker deletes all
the logging data, without needing to care the
administrator will detect the trouble or not? In this
situation, certainly the forensic investigators will
know somebody has already broken in, but that is
probably everything they learn, as the logging data
has gone. Especially if the attacker deletes data using
special tool such as Eraser [2], logging data become

more difficult, or even impossible, to recover.
- The logging data is sent out to a central logging
system on another machine, via network. This
method of keeping precious data is actually widely
used with tool like syslogd [3]. The logging data will
be sent to the central system, to be gathered and kept
there. Unfortunately while this is a very popular
scheme to prevent the attacker from modifying or
deleting logging data locally, we again face some
major troubles: Since the data is transmitted on the
network, they might be the targets of the attacker.
Various types of assault can happen: the precious
(and usually sensitive) data can be secretly sniffed
when they come across the network with well known
packet captured tool like tcpdump [4]. Even worse,
the data traffic can be redirected to a malicious host
with infamous methods like Man-In-The-Middle or
ARP Poison with available tools such as dsniff [5].

Last but not least, as the central logging server is
exposed to the network, the attacker can directly
break the central server, especially if the server runs a
buggy syslogd daemon [6]. Moreover, since syslogd
does not provide any authentication form, it must be
strictly managed by low level access control like TCP
wrapper [7] or local firewall rules (such as ipchains
or iptables [8] on Linux platform). Life is so hard.

A complicated and weird solution [9] is even
suggested to secure the central server: runs the central
server without IP address with the hope that nobody
can see it, and use a network sniffer (snort* in this
particular solution) to capture data sent out from the

* snort is an open source Intrusion Detection System, and
can function as a network sniffer

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp201-206)

logging machine.

To overcome the above headaches, this paper offers a
solution, including the design and implementation. A
system named Xenlog will be presented: Xenlog is
based on Xen Virtual Machine architecture, and
Xenlog can be effectively used as a central logging
system. With Xenlog, logging daemon and even
central server is not necessarily exposed to the
network, and data is securely forwarded to the central
server without getting through network stack. This
approach leaves the attacker no chance to sniff, steal
or redirect our valuable logging data.

The paper consists of six parts: the first part briefly
overviews the Xen Virtual Machine architecture. The
next part presents Xenlog architecture, while the third
part discusses in detail the design and implementation
of Xenlog. The fourth part shows us how easy it is to
deploy Xenlog software package, and demonstrates
Xenlog's effectiveness with several measures.
Related works are summarized in fifth part. Finally
conclusions will close this paper in sixth part.

2 Xen Virtual Machine
Xen [11, 12] is a virtual machine monitor initially
developed by the University of Cambridge Computer
Laboratory and now promoted by various industrial
monsters like Intel, AMD, IBM, HP, RedHat, Novel
and by the whole open source community. Being
released under the open source GNU GPL license,
Xen can be used to partition a machine to support the
concurrent execution of multiple operating systems
(OS). Commodity OS (now officially Linux,
FreeBSD, NetBSD are supported) can run on Xen
with small changes to the kernel. Xen is outstanding
because the performance overhead introduced by
virtualization is negligible: the slowdown is around
only 3% [13]. Various practices take the advantage
offerd by Xen, such as server consolidation, co-
located hosting facilities, distributed services and
application mobility.

Xen community is working hard to gradually push
Xen into Linux kernel, so it will be available for
every Linux users. The process is expected to start
from kernel 2.6.15.

3 Xenlog Solution
Xenlog is an architecture that allows DomU to
forward logging data to Dom0 via shared memory
(but not vice versa). Whenever DomU wants to send
out the data, DomU just needs to write the data to a
special software device in its kernel called xenlogU,
and xenlogU device will automatically transmit those
data through shared memory to another special device
in Dom0, named xenlog0. (We name this device

xenlog0 to distinguish it with the xenlogU device in
DomU). In Dom0, there is a daemon process named
xenlogd: its sole job is to continuously query for the
new data from the xenlog0 device, and write down
the gathered logging data to Dom0's file system.

Obviously with this architecture, applications in
DomU can send their logging data to Dom0 via
xenlogU device, and since xenlog0 and xenlogU
devices exchange information with each other via
shared memory between DomU and Dom0, no
whatsoever data will need to get through the network
stack. That is a major improvement to the traditional
methods, and it can help to overcome all the
mentioned security problems with networking
attacks. Another advantage of Xenlog is: as all the
data is exchanged through memory, the logging
process would be extremely fast and much more
reliable than in the legacy way.

3.1 Xenlog Design
Goals and Approach: Xenlog is designed for
simplicity and compliance. Simplicity is necessary to
allow all kinds of applications use it without any
difficulty. Compliance is to make sure all the
applications are using syslogd* can move on to use
Xenlog transparently. Moreover, Xenlog should
provides solution for software programs which
don’t send log data to syslogd, by allowing them to
forward data to Xenlog device without modifying
anything in the code, or not even need to recompile.

Design: With those objections in mind, Xenlog
architecture is built like below (see Figure 1):

Figure 1: Xenlog architecture

Xenlog architecture consists of three main
components: xenlogU device in kernel space of
DomU, xenlog0 device in kernel space of Dom0 and

* syslogd is a de-factor standard logging system of Unix
and Unix-derived world

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp201-206)

xenlogd, a logging daemon process, runs in Dom0's
user space.

In this architecture, applications run in userspace of
DomU sends logging data to xenlogU device located
at /dev/xenlog (for DomU's user perspective, there is
no xenlog0 device, so we will not name the device
/dev/xenlogU). When xenlogU obtains the data, it will
put them in the shared buffer, then inform xenlog0
device in Dom0. xenlog0 will read the data from the
shared buffer, and forward them to xenlogd daemon
in Dom0.

On the other hand, xenlog0 device exposes a device
file at /dev/xenlog in Dom0 (yes, we use same name
as the device file exposed by xenlogU in DomU for
the explained reason). In Dom0's user space, xenlogd
daemon repeatedly probes xenlog0 device for the new
logging data. As the new logging data arrives,
xenlogd will attempt to find those data belong to
which domain. After that, logging data will be written
down into the Dom0's file system, separately for each
domain.

To make it easy for third party, Xenlog provides a file
header xenlog.h, which provides declaration of
necessary data structure, so people wish to access to
Xenlog device for logging data can use it to write
their applications, for instance should they wish to
write their own logging daemon in Dom0 to take the
advantage of Xenlog architecture.

Currently Xenlog is implemented in Linux OS: the
reason is the port of all other Oases but Linux (such
as FreeBSD, NetBSD) are not quite mature yet. We
plan to provide support for those platforms once they
are ready.

The following part will present our achievement in
Linux environment, but let's keep in mind that
implementation is basically same to all the others.

3.2 Xenlog Implementation
xenlog0 and xenlogU are both software devices
developed to run in the kernel space of Dom0 and
DomU, respectively. Written in C language, those
device drivers can be employed as module inserted
into kernel, or patched to built-in into the kernel: We
provide both kernel module and kernel patches for
those devices, and users can choose either way to
apply Xenlog to their system.

As DomU and Dom0 run on the same machine, they
can share memory with each other. In Xenlog
architecture, when xenlogU is initialized, it will
allocate some memory for sharing (the amount of
shared memory is configurable at runtime - by default

is 1 page, which is equivalent to 4KB on x86
systems), and grant those memory to Dom0 by using
Xen grant reference API ([13]). This shared memory
will be used to store the logging messages sent in by
applications from DomU, and xenlog0 will also read
the messages from there. That is how xenlog0 device
gets logging data from xenlogU device.

To communicate with xenlog0, xenlogU assigns an
event-channel port to send and receive notifications
with xenlog0. This event-channel will be bound to an
interrupt request (irq) handler, so it can get
notifications dispatched from xenlog0 at runtime.
After that, xenlogU informs the value of grant
reference got in the above step, together with the
event-channel port to xenlog0. At this moment, the
event-channel is not established yet, so xenlogU will
write this information to xenstore via xenbus
interface.

In Dom0, when initializing xenlog0 registers a
xenbus watch to listen for change to xenstore. When
it detects the new notifications written to xenstore by
xenlogU, xenlog0 will try to map the shared memory
reference granted by xenlogU. After that, it allocates
an event-channel port corresponding to the event-
channel port of xenlogU. Finally, xenlog0 binds its
event-channel to the irq handler, so it can handle the
notification dispatched from xenlogU. From now on,
xenlogU and xenlog0 can contact through event-
channel.

Since Xenlog device driver is designed to gather
logging messages from all the applications on the
system, it must be able not to be overwhelmed by too
much data. No matter how big the internal buffer is,
we must take into account a problem when the
logging data is so voluminous that the shared buffer
cannot handle them.

Another difficulty is: the shared buffer must be read
and written at the same time. Let's imagine this
scenario: an application in DomU tries to write data
to xenlogU device's buffer, and at the same time
xenlog0 tries to read data from the same buffer. These
activities can lead to conflict or causes the race
issues.

Those troubles direct us to the decision: the shared
buffer should be designed as a ring buffer. Ring
buffer is special data structure which has 2 heads: one
for reading and one for writing, and these heads can
wrap-around when they reach the end of the buffer.
Writing data to buffer will take away some spaces,
but reading from the buffer will release some spaces,
and the free space then can be used for another
writing request later. See figure 2 below for the

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp201-206)

declaration of the ring buffer structure.

struct ringbuf
{
 u32 write; /* next place to write */
 u32 read; /* next place to read */
 u32 size; /* buffer size */
 char buf[0]; /* data buffer */
} __attribute__((packed));

Figure 2: Shared memory and internal buffer of xenlog0 use
ringbuf data structure

The ring buffer helps to address the conflict problem
in shared memory: while data from DomU is written
to buffer (from application request) at write-head,
buffer can be read from read-head by xenlog0. With
this solution, we do not need to use any locking
primitive, which will unavoidably slow down the
whole process.

Another job xenlogU must do when starting is to
register a misc device located at /dev/xenlog.
Whenever this device gets the write request, the data
from the request (this is the logging data we must
handle) will be written into the shared memory.

After request data is saved into the buffer, xenlogU
notifies xenlog0 about the new data in the shared
memory, so xenlog0 can extract data out (after getting
logging messages, xenlog0 will release the
corresponding space, thus xenlogU can recycle it to
save new data later). Then xenlog0 will notify
xenlogU that it has finished the reading. All these
notifications are taken place through event-channel.

After getting logging data from DomU, xenlog0 puts
this data into its internal ring buffer. The size of this
buffer is also configurable at boot time, is 2 pages by
default (equivalent to 8KB on x86). To distinguish
data from different domains, xenlog0 puts the logging
data into a C structure named xenlog_record. (See
figure 3) This structure will save domain id, so
xenlogd can know which DomU sent this message.
Together with domid, the length of message is also
stored. After that, logging data is appended at the end
of the structure, and everything is put into the ring
buffer.

struct xenlog_record {
 domid_t domid; /* domain id */
 u16 length; /* message's length */
 char buf[0]; /* message content */
} __attribute__((packed));

Figure 3: logging message sent from DomU will be saved in
xenlog_record structure

On Dom0 side, xenlog0 also registers a misc device
at /dev/xenlog and allow applications (xenlogd

daemon in this particular case) read them. The read
request to /dev/xenlog will get logging data from the
read-head of the internal ring buffer of xenlog0.

xenlogd is the final piece of the picture: it is a special
daemon process that continuously reads data from
Xenlog device put at /dev/xenlog. While Xenlog
devices are written in C, xenlogd is written in Python
language. The reason we choose Python is xenlogd
must report the domain name, while xenlog_record
can only offer domain id. Unfortunately domain
name is the concept at tool set level, but not at lower
level, so we cannot get it via Xen API or libxenctrl*.
The right way to convert domain id to domain name
is to get it through xend daemon, and because xend
exposes the domain properties via Python module,
Python language is the best choice to implement
xenlogd.

At runtime, xenlogd repeatedly queries /dev/xenlog
for new logging data. As new data arrives, xenlogd
extracts information from xenlog_record, figures out
how much logging data appended after this record
thanks to the length field. Then xenlogd attempts to
read exactly that amount of data. After all, xenlogd
will convert the domain id in xenlog_record structure
to domain name (xenlogd inquires this information
from xend), then open a log file corresponding to that
domain, and finally adds the logging data to the tail
of that file.

As the logging data usually consist of lines, before
writing to the log file, xenlogd will split the data into
lines, and put time record before each line to declare
the local time it receives this log.

4 Deploy and Evaluate Xenlog
The following parts show us how to deploy Xenlog
and its add-in tool. After that the performance of
Xenlog is verified by some experimental.

4.1 Deploy Xenlog
As one of the designed objects of Xenlog is to be
used to transparently send the logging data to central
server put in Dom0, the recommend way to deploy it
is to get syslogd (or similar logging daemon) to write
out the logging data to Xenlog device. We can simply
put this line into /etc/syslog.conf [14] of DomU (see
figure 4)

. /dev/xenlog

Figure 4: Configure syslog to send data to xenlog device

The remaining job is to restart syslogd (usually with
the command “/etc/init.d/syslog restart”)

* libxenctrl is a Xen library provided for third party
applications

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp201-206)

To capture logging data, we run xenlogd in Dom0
with command “xenlogd start”. For those who want
to see how xenlogd works, they can run it in debug
mode (with command “xenlogd start --debug”) in
Dom0: The entire logging data received by xenlogd
will be output on the console.

To make it easier for people to deploy Xenlog
package, we provide with xenlogd an init-script
named xenlogd.sh to put it into /etc/init.d directory of
Dom0. The administrator just needs to link this script
to default run-level directory (for example /etc/rc3.d),
and xenlogd will be started automatically at boot up.

4.2 Add-in tool
There is another class of software programs need to
be taken care: those have logging data, but do not use
syslogd for logging. We support these kind of
applications with another tool named xentaild.
Running in background, this tool continuously checks
to see if the configurable logging files are updated. If
it detects the new data has been appended to a
specific log file, it will extract the new logging data
out, and forwards them to /dev/xenlog.

This handy tool has derived from xtail [15] with some
newly advanced features; among of them are: runs as
daemon process in the background, supports
configuration file with unlimited logging files at the
same time.

xentaild is provided with our Xenlog package, and
should be run as a daemon in Dom0 together with
xenlogd.

4.3 Evaluation
As we see, Xenlog architecture forwards data to the
central server without going through the network
stack, therefore we anticipate that Xenlog gives us a
better performance than the traditional way. Our
measures confirm that expectation.

We will evaluate 3 schemes as follows:
– syslogd method: This test sends logging data

using the traditional method: syslogd daemon in
DomU is setup to forward logging data to remote
syslogd daemon in Dom0. We configure syslogd
in Dom0 to accept remote logging data (with -r
option), and the obtained data will be forwarded
to a named pipe for our awaiting script.

– syslog_xenlog method: In DomU, logging data
are sent to syslogd, and those data will be
forwarded to Dom0 via xenlogU device. In
Dom0, a small Python script is used to get data
directly from xenlog0 device.

– xenlog method: In DomU, data is directly sent to

xenlogU without going through syslogd, and this
test does not require to reconfigure syslogd. In
Dom0, a small Python script is used to get data
directly from xenlog0 device.

Of the above methods, only the syslogd method
routes messages to Dom0 through network stack,
while the other two uses shared memory between
DomU and Dom0 to send data. The 2nd method still
uses syslog to send messages, while the 3rd method
directly connects with xenlogU device.

With the first 2 methods, a small (11 lines) Python
script will send 1000 syslog messages, each message
contains 150 characters, of local7.debug type to
Dom0. Likewise, with the last method a similar script
will send the same data to Dom0 via xenlogU device.
Each test will be repeated 10 times for corresponding
method, and will be named Test1, Test 2, ..., Test 10.

At the time of test, syslogd is restricted not to receive
any logging data, but only messages of the special
type local7.debug, so we ensure that nothing will
interfere our experiments.

On receiving side in Dom0, in the first method we
use a small Python script (of 39 lines) to get data
from syslog named pipe, and a similar script to pick
up data from xenlog0 device in the last 2 cases.
These scripts will record the time they obtain the 1st

and the 1000th message, then calculate the difference
to give us the total time needed to receive all the
messages.

The evaluation is carried out on a machine with
Athlon XP 2500 processor, 512MB RAM and IDE
HDD of 40GB. We uses Xen 3.0 unstable version,
and Dom0 is setup with 384MB, while DomU uses
100MB memory with a file-backed files system of
2GB and a file-backed swap file system of 256MB.
Both Dom0 and DomU use Linux Ubuntu
BreezyBadger distribution.

Our evaluation returns the result as followings: on
average syslogd method takes 0.430896 sec,
syslog_xenlog method takes 0.312821 second and
xenlog method takes 0.018188 second to complete the
test. Of 3 methods, syslogd method takes most time to
complete: 1.377 times more than syslog_xenlog
method, and 23.691 times more than xenlog method.
We can also conclude that users can benefit from
Xenlog by redirect the logging data to xenlogU
device, as demonstrated with the result of
syslog_xenlog method. And above all, xenlog method
is unsurprisingly the fastest method, far faster than
the traditional method syslogd.

In general, we also believe that xenlog method is

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp201-206)

more reliable than syslogd method. The reason is with
Xenlog, data is exchanged in the memory, there is
very little chance that something will corrupt our
data. Another important point we should not ignore:
syslogd uses UDP, a connectionless protocol, to send
data, and that makes syslogd even less trusted.

5 Related works
Because central logging is very important for
distributed system, many efforts have been made to
send the logging data to the central server, in many
ways. The most popular mechanism is syslogd. The
syslogd and syslogd-derived solutions all have
capability of forwarding logging data to remote
central machine.

In particularly, there are some alternatives to syslogd
with enhanced functions. One is syslog-ng [16],
which is declared as syslogd replacement. syslog-ng
provides some nice features; among them are filter
based on message contents using regular expression,
more flexible configuration and allow to use TCP as
transmission protocol when sending logging data to
remote machine.

Another option is rsyslog [17]: the outstanding
feature of rsyslog is this tool permits to send logging
data to a database server (like MySQL) on the
network.

The common requirements to all of the above
solutions are: the client and server need to expose to
the network, and all the transmission is through
network. Thus they are all vulnerable to security
issues we mentioned.

Since the above projects are compatible with syslogd,
Xenlog could be comfortably used with all of them.

As we are aware, Xenlog is the first project
exploiting the advantage of Xen technology to secure
the logging data.

6 Conclusion
Traditionally, logging data could be secured by
sending out to the central system on the network.
This method poses a lot of issues: sensitive data when
going through the network might be captured, stolen,
and there are some potential troubles for the central
server which must expose to the network. This paper
has proposed a full architecture based on Xen virtual
machine named Xenlog. With Xenlog, data is
transferred from logging system runs on DomU to a
daemon on Dom0. Xenlog exploits the fact that both
DomU and Dom0 run on the same machine, so they
can exchange information straightly via shared
memory. Consequently we no longer need to use the

network stack for transmitting data, and we can
happily avoid the problems of the legacy approach.
The resulted software proves to be flexible, reliable,
far more effective, and can be used by all kinds of
applications wish to forward logging data to the
central server. Especially, if applications are rewritten
to take the advantage of the new interface
/dev/xenlog, they can send messages to central server
in Dom0 in a very high speed, as validated in the
evaluation.

The method and solution applied for Xenlog can be
reused for many other problems which need to
exchange data between DomU and Dom0 in Xen.

References:
[1] Shamhain tool. http://samhain.sourceforge.net. September

2005
[2] Eraser tool. http://www.heidi.ie/eraser/. August 2003
[3] RFC 3164 - The BSD Syslog Protocol.

http://www.faqs.org/rfcs/rfc3164.html. August 2001
[4] tcpdump tool. http://www.tcpdump.org. October 2005
[5] Dug Song, dsniff tool.

http://naughty.monkey.org/~dugsong/dsniff/. December
2000

[6] Bugtraq. Linux syslogd Denial of Service Vulnerability.
http://www.securityfocus.com/bid/809. November 1999

[7] TcpWrapper. ftp://ftp.porcupine.org/pub/security/. April
2004

[8] Netfilter/Iptables project. http://www.netfilter.org. July
2005

[9] Mick Bauer: Stealthful Sniffing. Intrusion Detection and
Logging, http://www.linuxjournal.com/article/6222.
October 2002

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebar, Ian Pratt, Andrew
Warfield, Xen and the art of virtualization. ACM
Symposium on Operating Systems Principles, October
2003

[11] Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach
and Andrew Warfield, Dan Magenheimer, Jun Nakajima
and Asit Mallick, Xen 3.0 and the art of virtualization.
Proceedings of Linux symposium, July 2005

[12] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik,
Matthew Finlayson, Jason Herne and Jeanna Neefe
Matthews, Xen and the art of repeated research, Freenix
2004

[13] Christopher Clark, A Rough Introduction to Using Grant
Tables, Xen tree code: docs/misc/grant-tables.txt, March
2005

[14] syslog configuration,
http://www.die.net/doc/linux/man/man5/syslog.conf.5.html

[15] Chip Rosenthal. xtail tool,
http://www.unicom.com/sw/xtail/. June 2000

[16] syslog-ng project.
http://www.balabit.com/products/syslog-ng/. April 2003

[17] rsyslog project. http://www.rsyslog.com. October 2005

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp201-206)

