
 �

Chapter XII
Device Driver Based Computer

in Broadband Age
Yoshiyasu Takefuji

Keio University, Japan

Koichiro Shoji
SciencePark Corporation, Japan

Takashi Nozaki
SciencePark Corporation, Japan

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Background

On April 19, 1965, Moore predicted that the
number of transistors per integrated circuit would
double every 18 months (Moore, 2001). Ruley
showed that the speed of CPU has been double
every 18 months (Ruley, 2001). Although the
recent progress of semiconductor technology has
been providing us over 2 GHz (gigahertz) CPU

devices, you may not be able to obtain such dra-
matic improvements with your personal computer
because you do not sense the high-speed CPU
devices. In existing popular operating systems,
including Microsoft Windows, Macintosh, Linux,
and FreeBSD, your user software programs do
not maximize the performance of such a high-
speed CPU and other resources. In this chapter, a
device driver-based computer is proposed, where

Abstract

In this chapter, we present a device-driver-based computer that realizes the reduction of mode (domain
or vertical) switching overheads between user and kernel mode with innovative attributes, including
shared keyboards and mice, access-controlled files, and timed files. Experimented results show that old
personal computers can revive again with the proposed Driverware technology. The proposed Driver-
ware can improve the CPU resource utilization by three times.

�

Device Driver Based Computer in Broadband Age

the “Driverware” software program plays a key
role. “Driverware” allows you to dramatically
improve user software programs in your personal
computer without replacing the current operating
system. The technical aspects of the root of all evil
that waste your CPU resources in user software
programs are caused by device driver programs.
A device driver is a software program to control
a hardware component or peripheral device of a
computer, such as a hard disk, a CD/DVD player, a
network device, a mouse, keyboard, a video card,
and so on. Driverware provides the current oper-
ating system a thin layer closest to the hardware
layer, where communications and controls among
device drivers can be established. Overheads in-
volved in device drivers are significantly reduced
by the driver-to-driver communications and
controls. When playing a CD/DVD audio/video
player or a network video stream on your GHz
CPU-based personal computer in the broadband
network, you may still face frame drop or abrupt
audio skips if you do Web browsing simultane-
ously. Four device drivers, including a network
device driver, a video device driver, audio device
driver, and a display device driver, are involved
in this network video stream processing. If the
priority of network device driver is lower than
that of the other drivers, you may face the frame
drop. If four device drivers are properly balanced
and their priorities are taken care of, then you
will be satisfied with the current network video
stream without using a special hardware such as a
network video stream receiver. Driverware allows
device drivers to communicate each other, and
to efficiently control computer resources in order
to reduce overheads involved in device drivers.
Frame drops and abrupt audio skips are minimized
by the proposed Driverware. Until the advent of
Driverware, there has been no general-purpose
device-driver-based computer. The key element
of Driverware is based on distributed delegation
of authority, while conventional user programs
are based on the centralized control. In user
programs, overheads are caused by unnecessary

thread* switching in a process, context (hori-
zontal) switching between processes, and mode
(domain or vertical) switching between kernel and
user mode. The proposed Driverware contributes
to reduce the mode-switching overheads. We have
measured the mode-switching overheads involved
in device drivers for the first time in the world.
Based on the measured result, your old personal
computers in the garage can revive again.

The framework for minimizing overheads of
vertical and horizontal switching was proposed
in 1994 (Inohara & Masuda, 1994). Horizontal
switching problems in user mode were discussed
in Borg (2001). Ousterhout has measured the mode
and context-switching overheads in RISC/CISC
machines under the Unix operating system in 1990
(Ousterhout, 1990). In 1996, Lai and his colleagues
measured the mode and context-switching over-
heads in Intel x86-based machines under Linux/
FreeBSD/Solaris operating systems, respectively
(Lai & Baker, 1996). Based on the existing results,
reducing the context-switching overheads plays
a key role in overall system performance, where
the context switching overhead is larger than the
mode-switching overhead by 10 times. Ultimately
optimized context-switching operating system,
RT-Linux has been introduced (Ramamritham &
Stankovic, 1994; Zhou & Petrov, 2006). Based on
the context-switching overhead reduction, TUX （
Threaded Linux Web server (Bar, 2000)), and other
Web servers have shown the high performance,
respectively (Quynh & Takefuji, 2006).

In the real world, the majority of users use
Microsoft operating systems for personal use
(Sun, Lin, & Wu, 2006). Based on our study,
the mode-switching overhead reduction is more
important than the context-switching overhead
reduction under Microsoft operating systems.
Figure 1 shows the table of the mode-switching
and context-switching overheads, where more
than 2 months were used for switching overhead
measurement. In Windows 2000 operating system
(Microsoft, 2006), 7.4 microseconds are required
per the mode-switching overhead with a Celeron

 �

Device Driver Based Computer in Broadband Age

800MHz CPU. For mode-switching measure-
ment, 10 million integer additive operations were
experimented under Windows 2000, Linux, and
FreeBSD respectively.

The relationship between waste resource rate
vs. ftp-network transfer speed, as shown in Figure
2, indicates how much your CPU resources are not
used for your applications. Figure 2 shows that,

Figure 1. Mode-switching and context-switching overheads

Figure 2. Waste resource rate vs. transfer speed

Figure 3. File transfer speed comparison

*A thread is one part of a larger program that can be executed independent of the whole (ComputerUser, 2006).

�

Device Driver Based Computer in Broadband Age

from 0 Mbps to 1 Mbps, the waste resource rate
increases along with less transfer speed. From
1 Mbps to 100 Mbps it is almost flat and from
100 Mbps to 1 Gbps it increases with transfer
speed. For example, you will waste 92 % of CPU
resources in 1 gigabit-per-second transfer speed
using the Internet Explorer. In other words, only
8% can be used for your applications. We assume

that 100% CPU resources are used only for ftp
process in our measurement. Figure 3 shows file
transfer speed comparison between the normal
ftp program and the Driverware ftp program. It
indicates that CPU utilization is improved by about
three times. In this chapter, the mode-switching
overhead reduction is detailed.

Figure 4. Processing time flow between user and kernel mode

Figure 5. Sequence flow between user mode and kernel mode

 �

Device Driver Based Computer in Broadband Age

What is Going on in your Centralized
Control User Programs?

In your personal computer, the system is com-
posed of hardware (keyboard, mouse, hard disk,
CPU board, network card, LCD display, and so
on), operating system, and user application pro-
grams. Unless you buy a special hardware device,
conventional user application programs based on
the centralized control generate mode-switching
overheads between user and kernel mode. For
example, in the network device driver, when the
user application program requests open socket,
the mode switching from user to kernel mode is
needed to complete the task. Centralized-control
user programs inherently have a disadvantage
of mode-switching overheads between user and
kernel mode. All operations involved in network
and storage device driver are shown in Figure 4
and Figure 5. Figure 4 shows that the total mode-
switching overheads, surrounded by broken lines,
are equivalent to the total waste of CPU resources.
Eleven operations are involved in network device
driver and eight operations in storage device
driver. Fourteen operations (O1, O2, O3, O5, O6,

O7, O9, O10, O12, O13, O14, O16, O17, O18) out
of nineteen operations must cross the user-ker-
nel boundary, which causes fundamental mode
(domain or vertical) switching overheads. When
you do browsing over the Internet, you would like
to download some files. The operation sequence
flow is as follows:

When clicking the downloadable file using
a Web browser (O1), the browser requests data
acquisition to the network device driver after
setting Web server address and port number (O1
and O2). Web server establishes the connection
and sends the requested file. Network card returns
the data-receive event to the network driver (O4).
The network driver returns the receive event to
the Web browser (O5). Web browser receives the
data (O6, O7, and O8). Web browser displays the
dialog window to specify the directory for sav-
ing the downloadable file and user must input
the file name (O12 and O13). Download progress
bar is displayed and the file downloading will be
completed (O14-O19).

As shown in Figure 4 and Figure 5, a sequence
flow is described where 14 operations must transit
from user mode to kernel mode or vice versa. The

Figure 6. Driverware solution to operations as shown in Figure 5

�

Device Driver Based Computer in Broadband Age

mode-switching time tuk from user mode to kernel
mode and tku from kernel mode to user mode are
consumed as waste of CPU resources. The total
computation time of the typical user application
program user is composed of user processing time,
kernel processing time, accumulated switching
time from user mode to kernel mode, and ac-
cumulated switching time from kernel mode to
user mode.

Device Driver-Based Computing

Device driver-based computing is based on
Driverware where the operations of driver-driver
communications and controls are achieved. Figure
6 shows the device-driver-based computing where
most mode-switching overheads are reduced.
Fourteen operations that cross the user-kernel
boundary are reduced into two operations in
Driverware. The overhead reduction is achieved by
enabling driver-driver communications and con-
trols in the kernel mode. Until now, there has been
no general purpose distributed-control solution
by reducing mode, vertical, or domain-switching

overheads between user and kernel mode. Vertical
or mode-switching overheads can be reduced by
the distributed delegation of authority.

Between several device drivers, security
controls can be established within Driverware
where several new attributes are generated as
a by-product. A file in Driverware is called ac-
cess-controlled file. For example, as soon as a
user without access permission touches or reads
the access controlled file, immediately the user’s
keyboard will be locked. Another new attributed
file is called timed file in Driverware, like a tape
in the “mission impossible” movie where it will
disappear within a certain specified period of
time without user’s intention. Driverware allows
every device driver to have a state sense operation
and an action operation against any computing
resources.

Conclusion

Device driver-based computer is proposed in
this chapter, where mode (domain or vertical)

Figure 7. A processing time flow by Driverware solution

 �

Device Driver Based Computer in Broadband Age

switching overheads between user and kernel
mode are dramatically reduced, and every com-
puter resource will have new attributes, including
shared keyboards and mice, access controlled
files, and timed files like mission impossible files
tape. Experimented results show that old personal
computers can revive again with the proposed
Driverware technology. The proposed Driver-
ware can improve the CPU resource utilization
by three times.

Acknowledgment

We thank Tomoyuki Kawade, Hideaki Miura, and
Jianping Wei for their many helpful comments and
experiments of device driver benchmarking. Part
of this research is supported by Department of
the Air Force through a special contract (Takefuji,
2003; Takefuji, 2005).

References

Bar, M. (2000). Kernel korner. The Linux Process
Model. Linux Journal, 71,(24).

Borg, A. (2001). Avoiding blocking system calls in
a user-level thread scheduler for shared memory
multiprocessors. Dissertation of Univ. Malta,
June 2001.

ComputerUser. (2006). Thread. Computer-
User high-tech dictionary. Retrieved De-
cember 30, 2006, from http://www.comput-
eruser.com/resources/dictionary/definition.
html?lookup=8392

Inohara, S., & Masuda, T. (1994). A framework
for minimizing thread management overhead
based on asynchronous cooperation between
user and kernel schedulers. TR94-02, University
of Tokyo.

Lai, K., & Baker, M. (1996). A performance
comparison of UNIX operating systems on the

Pentium. Proceedings of the USENIX 1996 An-
nual Technical Conference.

Microsoft. (2006). Windows 2000. Microsoft
Windows 2000. Retrieved December 30, 2006,
from http://www.microsoft.com/windows2000/
default.mspx

Moore, G. E. (2001). Cramming more components
onto integrated circuits. Electronics, 38(8).

Ousterhout, J. K. (1990). Why aren’t operation
systems getting faster as fast as hardware? USE-
NIX Summer Conference, June 11-15, 1990.

Ramamritham, K., & Stankovic, J. (1994). Sched-
uling algorithms and operating systems support
for real-time systems. Proceedings of IEEE,
8(21), 55-67.

Regehr, J. D. (2001). Using hierarchical sched-
uling to support soft real-time applications in
general-purpose operating systems. Dissertation
of Univ. of Virginia, 2001.

Ruley, J. D. (2001). The future of Moore’s law,
Part 1. Retrieved June 25, 2001, from http://www.
byte.com

Sun, H. M., Lin, Y. H., & Wu, M. F. (2006). API
monitoring system for defeating worms and ex-
ploits in MS-Windows system. Proceedings of
Information Security and Privacy, Lecture Notes
in Computer Science, 4058, 159-170.

Takefuji, Y. (2003). Technical report of DRIV-
ERWARE IMMUNE. US Air Force Office of
Scientific Research with Grant Number AOARD
03-4049

Takefuji, Y. (2005). Nullification of unknown
malicious code execution with buffer overflows.
Driverware IMMUNE – Final Report. Technical
report of DRIVERWARE IMMUNE, US Air
Force Office of Scientific Research with Grant
Number AOARD 03-4049.

Quynh, A. N., & Takefuji, Y. (2006). Towards an
invisible honeypot monitoring system. Proceed-

�

Device Driver Based Computer in Broadband Age

ings of Information Security and Privacy, Lecture
Notes in Computer Science, 4058, 111-122.

Zhou, X., & Petrov, P. (20 control applications.
In Proceedings of the 43rd annual conference on
Design automation (pp.352-257).

