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Editor―Sim and colleagues 1 conducted a multicentre retro-

spective study to develop and validate a predictive model for 

intraoperative red blood cell (RBC) transfusion in major 

abdominal surgery. Their approach involved using multivar-

iate logistic regression, a statistical method commonly applied 

in scenarios where the outcome variable is binary (e.g. 

whether or not a transfusion occurs). They incorporated the 

least absolute shrinkage and selection operator (LASSO) 

technique to optimise variable selection in constructing the 

prediction model. LASSO is particularly useful for addressing 

potential multicollinearity among predictors and helps iden-

tify significant variables by applying a penalty that reduces the 

influence of less relevant predictors, effectively shrinking their 

coefficients to zero. This penalty is controlled by a regular-

isation parameter that determines the strength of the 

shrinkage effect, allowing researchers to balance model 

complexity against predictive performance. The final predic-

tive model was constructed by retaining only those variables 

with non-zero coefficients, which enhances model applica-

bility and accuracy within clinical settings. 1 This rigorous 

variable selection process is critical to ensuring that the model 

is both interpretable and clinically useful, as it eliminates 

unnecessary variables that might introduce noise rather than 

meaningful predictive power.

However, it is important to note that Sim and colleagues 1 

might not have fully understood the fundamental principles 

underlying machine learning methods. Individual data anal-

ysis tools, such as logistic regression and LASSO, are built on 

specific underlying assumptions against the data. Logistic 

regression assumes parametric distribution. Similarly, LASSO

is also designed for linear relationships and inherits many of 

the assumptions of the underlying linear model it regularises. 

If these assumptions are violated, such as when applying 

linear models to nonlinear data or when using parametric 

methods (such as logistic regression or LASSO) on nonpara-

metric data, the results can be inherently distorted. In 

nonlinear relationships, for instance, a linear model would fail 

to capture the true underlying pattern, potentially missing 

important interactions or threshold effects in the data. This 

can lead to inaccurate P-values and misinterpretations 

regarding predictor importance, ultimately resulting in flawed 

conclusions about which variables truly predict transfusion 

requirements. It is essential for researchers to consider the 

characteristics of their data and choose appropriate method-

ologies to ensure the validity of their findings, perhaps by 

incorporating preliminary tests for linearity or considering 

more flexible modelling approaches when necessary. 

Logistic regression is a parametric method; when it is 

applied to nonparametric data, as is often observed in bio-

logical analysis, the outcomes are potentially skewed, leading 

to erroneous conclusions. 2—8 Parametric methods such as lo-

gistic regression make strong assumptions about the under-

lying distribution of the data, typically assuming that 

relationships follow specific mathematical forms and that 

residuals are normally distributed. However, biological data 

frequently exhibit complex, non-normal distributions, 

threshold effects, and intricate interdependencies among 

variables that violate these assumptions. When these viola-

tions occur, the estimated coefficients, standard errors, and 

resulting P-values and feature importances can be severely 

biased, leading researchers to either miss truly important 

predictors or incorrectly identify spurious associations. LASSO 

assumes linear and parametric relationships between
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predictors and outcomes, and when it is applied to nonlinear 

nonparametric data, violations are even more severe, leading 

to erroneous interpretations. 9—15 The penalty term in LASSO 

operates under the assumption that the true model is sparse 

and that relationships are linear, which might not hold in 

complex biological systems. When applied to nonlinear data, 

LASSO might erroneously eliminate important variables 

whose effects are nonlinear or manifest only in interactions 

with other variables, while retaining less important but line-

arly related predictors, thus compromising both model inter-

pretability and predictive performance.

Currently, there are no algorithms to accurately calculate 

true associations between variables, so Sim and colleagues 1 

advocate for use of multifaceted approaches using unsuper-

vised machine learning models such as feature agglomeration 

and highly variable gene selection, followed by nonlinear 

nonparametric methods such as Spearman’s correlation with 

P-values for monotonic relationships. Feature agglomeration is 

a dimensionality reduction technique that clusters similar 

features together, effectively reducing redundancy in the data 

while preserving its intrinsic structure. Unlike parametric 

methods, feature agglomeration makes no assumptions about 

linear relationships, instead grouping variables based on their 

natural similarities across the dataset. This approach is partic-

ularly valuable when dealing with high-dimensional biological 

data where complex interdependencies exist. Similarly, highly 

variable gene selection, although traditionally used in geno-

mics, represents a concept applicable to identifying features 

with the highest information content across samples, focusing 

analytical attention on variables with the greatest potential 

predictive power. After this initial feature reduction, Spear-

man’s rank correlation with P-values offers distinct advantages 

over parametric alternatives such as Pearson’s correlation, as it 

assesses monotonic relationships (where variables tend to 

change together but not necessarily at a constant rate) rather 

than strictly linear ones. By converting values to ranks before 

calculating correlations, Spearman’s approach becomes 

resistant to outliers and makes no assumptions about the 

underlying data distribution, making it particularly suitable 

for biological datasets where relationships often follow 

complex patterns but still exhibit important monotonic trends. 

This comprehensive approach acknowledges the inherent 

complexity of biological systems while providing robust statis-

tical foundations for identifying meaningful associations. 

Researchers should begin with a quality assessment of 

datasets, including evaluation of distributional properties, 

missingness, outliers, and redundancy. When considering lo-

gistic regression, unsupervised clustering can be used as a 

diagnostic to assess latent heterogeneity and overall data 

structure; evidence of multiple, well-separated subgroups can 

suggest the need for stratified analyses, interaction terms, 

nonparametric transformations, or mixture models, whereas 

a cohesive structure may support a single global model with 

appropriate diagnostics. When the optimum number of clus-

ters is three or higher, logistic regression should not be 

applied, as forcing multiple latent states into binary outcomes 

can induce erroneous biases and model misspecification. Un-

supervised methods can help mitigate label-driven bias and 

often yield more stable feature rankings when labels are 

limited or noisy. For example, feature agglomeration, highly 

variable gene selection, and rank-based measures such as

Spearman correlation can reduce dimensionality, address 

multicollinearity, and provide stable feature prioritisation. In 

contrast, supervised methods such as LASSO and logistic 

regression can display variability in selected features across 

resamples because of model specification and sampling vari-

ation; reporting stability is therefore recommended. Finally, 

feature importance derived from supervised models should be 

interpreted as contributing to predictive performance within 

the specified model rather than as evidence of causal or 

mechanistic association. Supervised models involve two 

distinct notions of accuracy: target prediction accuracy (vali-

dation against given labels) and feature-importance reliability 

(in the absence of ground truth); high predictive accuracy does 

not guarantee reliable feature importances.
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