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Editor—Sim and colleagues® conducted a multicentre retro-
spective study to develop and validate a predictive model for
intraoperative red blood cell (RBC) transfusion in major
abdominal surgery. Their approach involved using multivar-
iate logistic regression, a statistical method commonly applied
in scenarios where the outcome variable is binary (e.g.
whether or not a transfusion occurs). They incorporated the
least absolute shrinkage and selection operator (LASSO)
technique to optimise variable selection in constructing the
prediction model. LASSO is particularly useful for addressing
potential multicollinearity among predictors and helps iden-
tify significant variables by applying a penalty that reduces the
influence of less relevant predictors, effectively shrinking their
coefficients to zero. This penalty is controlled by a regular-
isation parameter that determines the strength of the
shrinkage effect, allowing researchers to balance model
complexity against predictive performance. The final predic-
tive model was constructed by retaining only those variables
with non-zero coefficients, which enhances model applica-
bility and accuracy within clinical settings.! This rigorous
variable selection process is critical to ensuring that the model
is both interpretable and clinically useful, as it eliminates
unnecessary variables that might introduce noise rather than
meaningful predictive power.

However, it is important to note that Sim and colleagues’
might not have fully understood the fundamental principles
underlying machine learning methods. Individual data anal-
ysis tools, such as logistic regression and LASSO, are built on
specific underlying assumptions against the data. Logistic
regression assumes parametric distribution. Similarly, LASSO
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is also designed for linear relationships and inherits many of
the assumptions of the underlying linear model it regularises.
If these assumptions are violated, such as when applying
linear models to nonlinear data or when using parametric
methods (such as logistic regression or LASSO) on nonpara-
metric data, the results can be inherently distorted. In
nonlinear relationships, for instance, a linear model would fail
to capture the true underlying pattern, potentially missing
important interactions or threshold effects in the data. This
can lead to inaccurate P-values and misinterpretations
regarding predictor importance, ultimately resulting in flawed
conclusions about which variables truly predict transfusion
requirements. It is essential for researchers to consider the
characteristics of their data and choose appropriate method-
ologies to ensure the validity of their findings, perhaps by
incorporating preliminary tests for linearity or considering
more flexible modelling approaches when necessary.

Logistic regression is a parametric method; when it is
applied to nonparametric data, as is often observed in bio-
logical analysis, the outcomes are potentially skewed, leading
to erroneous conclusions.’ ® Parametric methods such as lo-
gistic regression make strong assumptions about the under-
lying distribution of the data, typically assuming that
relationships follow specific mathematical forms and that
residuals are normally distributed. However, biological data
frequently exhibit complex, non-normal distributions,
threshold effects, and intricate interdependencies among
variables that violate these assumptions. When these viola-
tions occur, the estimated coefficients, standard errors, and
resulting P-values and feature importances can be severely
biased, leading researchers to either miss truly important
predictors or incorrectly identify spurious associations. LASSO
assumes linear and parametric relationships between
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predictors and outcomes, and when it is applied to nonlinear
nonparametric data, violations are even more severe, leading
to erroneous interpretations.” *® The penalty term in LASSO
operates under the assumption that the true model is sparse
and that relationships are linear, which might not hold in
complex biological systems. When applied to nonlinear data,
LASSO might erroneously eliminate important variables
whose effects are nonlinear or manifest only in interactions
with other variables, while retaining less important but line-
arly related predictors, thus compromising both model inter-
pretability and predictive performance.

Currently, there are no algorithms to accurately calculate
true associations between variables, so Sim and colleagues®
advocate for use of multifaceted approaches using unsuper-
vised machine learning models such as feature agglomeration
and highly variable gene selection, followed by nonlinear
nonparametric methods such as Spearman’s correlation with
P-values for monotonic relationships. Feature agglomeration is
a dimensionality reduction technique that clusters similar
features together, effectively reducing redundancy in the data
while preserving its intrinsic structure. Unlike parametric
methods, feature agglomeration makes no assumptions about
linear relationships, instead grouping variables based on their
natural similarities across the dataset. This approach is partic-
ularly valuable when dealing with high-dimensional biological
data where complex interdependencies exist. Similarly, highly
variable gene selection, although traditionally used in geno-
mics, represents a concept applicable to identifying features
with the highest information content across samples, focusing
analytical attention on variables with the greatest potential
predictive power. After this initial feature reduction, Spear-
man’s rank correlation with P-values offers distinct advantages
over parametric alternatives such as Pearson’s correlation, as it
assesses monotonic relationships (where variables tend to
change together but not necessarily at a constant rate) rather
than strictly linear ones. By converting values to ranks before
calculating correlations, Spearman’s approach becomes
resistant to outliers and makes no assumptions about the
underlying data distribution, making it particularly suitable
for biological datasets where relationships often follow
complex patterns but still exhibit important monotonic trends.
This comprehensive approach acknowledges the inherent
complexity of biological systems while providing robust statis-
tical foundations for identifying meaningful associations.

Researchers should begin with a quality assessment of
datasets, including evaluation of distributional properties,
missingness, outliers, and redundancy. When considering lo-
gistic regression, unsupervised clustering can be used as a
diagnostic to assess latent heterogeneity and overall data
structure; evidence of multiple, well-separated subgroups can
suggest the need for stratified analyses, interaction terms,
nonparametric transformations, or mixture models, whereas
a cohesive structure may support a single global model with
appropriate diagnostics. When the optimum number of clus-
ters is three or higher, logistic regression should not be
applied, as forcing multiple latent states into binary outcomes
can induce erroneous biases and model misspecification. Un-
supervised methods can help mitigate label-driven bias and
often yield more stable feature rankings when labels are
limited or noisy. For example, feature agglomeration, highly
variable gene selection, and rank-based measures such as

Spearman correlation can reduce dimensionality, address
multicollinearity, and provide stable feature prioritisation. In
contrast, supervised methods such as LASSO and logistic
regression can display variability in selected features across
resamples because of model specification and sampling vari-
ation; reporting stability is therefore recommended. Finally,
feature importance derived from supervised models should be
interpreted as contributing to predictive performance within
the specified model rather than as evidence of causal or
mechanistic association. Supervised models involve two
distinct notions of accuracy: target prediction accuracy (vali-
dation against given labels) and feature-importance reliability
(in the absence of ground truth); high predictive accuracy does
not guarantee reliable feature importances.
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