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Editor—Mkrtchian and  colleagues’ conducted an
observational case—control study examining the relationship
between alterations in the cargo of circulating extracellular
vesicles (EVs) and cognitive decline after major surgery. They
used PCA to analyse the EV proteome, which comprised
normalised abundances of 214 proteins consistently
expressed across all samples. The PCA results revealed two
distinct clusters of EV proteome signatures at 24 and 48 h
after surgery, which were independent of the postoperative
cognitive outcome groups.’

However, this study raises important theoretical concerns
regarding the application of PCA, particularly because of its
linear nature. Although PCA is a widely used and powerful
tool, this characteristic can lead to erroneous interpretations
and conclusions when analysing nonlinear, nonparametric
biological data.””** For accurate data analysis, researchers
must thoroughly understand the assumptions underlying the
analytical tools they use. Violating these assumptions can
result in distorted outcomes including all metric scores, ulti-
mately leading to misleading interpretations.

There are three primary types of misapplications in data
analysis: (1) violating fundamental assumptions, (2) chal-
lenges related to ground truth in model interpretation, and (3)
critical misapplications such as improper data normalisation
and transformation. Here I highlight the first and third cate-
gories of misapplications identified in Mkrtchian and col-
leagues’ study.

PCA is predicated on several key assumptions: the exis-
tence of linear relationships among variables, the use of
continuous and standardised data, adequate sample sizes,

DOI of original article: 10.1016/j.bja.2024.07.040.

homoscedasticity, minimal outliers, and the orthogonality of
principal components. When linear models such as PCA are
applied to nonlinear datasets, or when parametric methods
are used inappropriately with nonparametric data, the results
can become significantly distorted. This distortion can result
from issues such as loading magnitudes, which can lead to
local optimisation errors, or from feature selection based on
cumulative contribution, which can incorrectly aggregate
contributions across orthogonal components. Therefore, strict
adherence to these underlying assumptions is essential for
drawing valid conclusions from PCA and similar analytical
techniques. Violating assumptions cannot guarantee calcu-
lated metric scores.

In light of these limitations, I advocate for using multifac-
eted approaches that integrate unsupervised machine
learning models, such as feature agglomeration’ and highly
variable gene selection.'® Feature agglomeration helps in
reducing dimensionality while preserving important struc-
tural information within the dataset. By grouping similar
features together, researchers can capture complex relation-
ships in the data without making linearity assumptions.
Meanwhile, highly variable gene selection prioritises the se-
lection of genes or proteins that exhibit the most significant
variability across samples, ensuring that the most informative
features are analysed for their biological relevance. After these
steps, researchers can then apply nonlinear, nonparametric
statistical methods, such as Spearman’s correlation, to draw
more reliable and interpretable insights from the data. These
approaches collectively enhance the robustness of the anal-
ysis and facilitate a more accurate understanding of the bio-
logical mechanisms underlying cognitive decline after

surgery.
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