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Reverse Mode Differentiation from Full-Scratch 
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Abstract: Recently, datasets have been discovered for which 

adaptive optimizers are not more than adequate. No evaluation 

criteria have been established for optimization as to which 

algorithm is appropriate. In this paper, we propose a 

characterization method by implementing backward automatic 

differentiation and characterizes the optimizer by tracking the 

gradient and the value of the signal flowing to the output layer at 

each epoch. The proposed method was applied to a CNN 

(Convolutional Neural Network) recognizing CIFAR-10, and 

experiments were conducted comparing and Adam (adaptive 

moment estimation) and SGD (stochastic gradient descent). The 

experiments revealed that for batch sizes of 50, 100, 150, and 200, 

SGD and Adam significantly differ in the characteristics of the 

time series of signals sent to the output layer. This shows that the 

ADAM optimizer can be clearly characterized from the input 

signal series for each batch size. 

Keywords: Characterization of Optimizers, Adaptive Optimizer, 

Reverse Mode Differentiation, CNN 

I. INTRODUCTION 

Researchers were missing an effective way to train deep 

neural networks until the late 2000s. At that time, neural 

networks working in a shallow with only at most two layers 

of representations. Main problem of neural networks is called 

the gradient vanishing problem. That is, the feedback signal 

for training neural networks would weaken and fade away 

with the increase of the number of layers.  

Several methods have been proposed for this problem as 

algorithmic improvements. 

▪ More sophisticated activation functions for neural 

layers [12]. 

▪ Better optimizers such as RMS Prop and Adam 

We can handle deep neural networks with ten or more layers 

by adopting these methods. Furthermore, batch normalization 

method [15]  in 2014 and residual networks [5] in 2015 were 

added to the set of deep learning technologies for helping 

gradient propagation. Nowadays, we can cope with scratch 

models with thousands of layers.  
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However, in [1], Wilson et al. found that there are data sets 

for which optimal adaptive methods do not provide general-

purpose performance. Therefore, there is a need for further 

exploration and improvement of adaptive optimization 

methods. In this article, we propose a characterization 

method of adaptive optimizers by tracing the final input 

values to the output layer. We have implemented automated 

reverse mode differentiation by C++ from full scratch. 

II. RELATED WORK 

The back-propagation algorithm, which is originally 

proposed by Rumelhart et al. [6] enables chain-rule for 

backward flow through the network for calculating the 

gradient. Caffe [16] adopts the approach of symbol-to-

number differentiation. Theano [9], Pytorch[2] and 

Tensorflow [3] adopts the approach with a computational 

graph where additional nodes represent a symbolic 

description of the expected derivatives. Random filters have 

a good performance in convolutional networks. 

CNNs which Le Cun first proposed [18], adopts a grid-like 

topology, which makes CNN a specialized kind of neural 

network. In [11], some theoretical guidance concerning 

coping with the pooling layer. Another essential feature of 

CNNs is the pooling layer. For instance, a clustering 

algorithm for each image's various pooling regions is 

presented in [10]. 

Boris Polyak proposes momentum optimization using 

terminal velocity [7]. Further, Nesterov Momentum 

Optimization (NAG) is presented by Yurii Nesterov in 1983. 

NAG applies a cost function by gradient. In NAG, the cost 

function is calculated before the momentum direction is 

determined. RMS Prop [8] improves Ada Grad [13] by 

calculating the gradients from the latest iterations. Adam [17] 

is a kind of hybrid version of both RMS Prop and optimizing 

momentum. In Adam, the average of the past squared 

gradient and an average of previously calculated gradients 

which is exponentially decaying are held during the learning 

process. Hy Adam C [19] is improved version of Adam in 

CNN. Recursion algorithm of batch normalization is 

discussed in [4]. Detailed implementation of deep neural 

network is presented in [14]. 

III. OPTIMIZERS: SGD AND ADM 

Adam [17], which stands for Adaptive Moments, is one of 

the optimization algorithms for holding track of the average 

exponential decay of past gradients. Like RMS Prop, it holds 

an exponentially decaying  
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Fig. 1.  Deviation of Linear fucion and activate fuction (RELU) in CNN

average of past squared gradients. Adam copes with the first-

order moment of the gradient as exponential weighing. 

Straightforwardly, Adam uses momentum with the 

rescaled gradients. Applying momentum with rescaling is not 

based on clearly-defined theoretical motivation. 

Also, Adam considers the bias corrections to the estimations. 

The estimations are figured out as the first-order and second-

order moments. 

Concerning momentum, RMS Prop figures out an 

estimation about the second-order moment. However, unlike 

Adam, the second-order moment of RMS Prop is estimated 

as high bias. 

Adam is often fairly robust to the perturbation of hyper 

parameters, as the learning rate of Adam often require to be 

modified from the suggested result. 

 
Finally, the weight update is as follows: 

 

 

Fig. 2.  Adam kernel: C++ code of equation (1) (2) 

The figure shows the code for updating weights by Adam. 

Here, mm is the first-order moment of gradient (mean). And 

mv is the second-order moment which is variance. The 

variables of beta1 and beta2 are hyper parameters. 

 

Fig. 3.  Adam kernel: C++ code of equation (3) 

IV. IMPLEMENTATION 

A. Linear function 

The reverse mode differential of the loss function is 

denoted as follows: 

 

Here 𝑓𝑙 is the activation function, for example, the sigmoid 

and RELU (Rectified Linear Unit). 𝑈𝑙  is the input of l-th 

layer. Equation (4)(5) shown in Figure 2 represents the linear 

activation with weight 𝑤(𝑙) and bias 𝑏𝑙. We apply stochastic 

gradient descent with the incremental change of 𝑤(𝑙) where 

T is the mini-batch size. 

Figure 3 depicts the code for calculating the gradient 

according to the minimization in the equation of (6)(7). By 

adopting the chain rule, we can update the gradient 
𝜕𝐸𝑝

𝜕𝑤(𝑙)
from 

the output layer to the input layer I n back-propagation. At 

lines 16 to 19, ∆𝑙, which is represented the left side of the 

equation (6)(7), is calculated. 
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B. CNN 

The behavior of the human visual cortex inspired 
Convolutional Neural Networks (CNNs) designed to 

recognize objects. Recently CNNs have had overwhelming 

performance in the task of image classification. On the other 

hand, it is often pointed out that deep learning algorithms, 

including CNNs, are block boxes. The process of the 

algorithms is almost impossible to be translated into a human-

readable representation.  

This is also the case with convolutional neural networks. 

The weight matrix calculated by convolutional neural 

networks is highly amenable to image classification tasks 

because CNNs have good representations of visual concepts. 

Currently, the prevailing view is that there are no clear criteria 

for selecting an optimizer, based on the assumption that deep 

learning is a ``black box''. 

As we know, optimization is a critical step in deep learning 

algorithms. Unfortunately, we have yet to determine which 

algorithm one should choose so far. However, with a lot of 

open-source of CNNs available on the Internet website such 

as GitHub, we can modify those codes to track every variable 

in every phase of the process of learning.  By leveraging the 

open source, we present a novel method of full gradient 

tracing of adaptive moment estimation optimizer (Adam and 

Adagrad) in CNNs. 

 

Fig. 4.  C++ code of RELU 

C. RELU 

Figure 4 depicts C++ code of RELU (Reflective Linear 

Unit). In this implementation, the variable of weight and bias 

in each function is freed and erased after the function is 

called. Therefore we should save the result of the variable and 

weight in graph class. In Figure 4, the program derives 

Function Linear->forward and Function RELU->forward 

with the value of weight and bias. The framework in Figure 4 

is defined as follows: 

 
In equation (8), $ \psi $ is an activation function, for 

example, Tanh and RELU. FunctionLinear is implemented 

as a C++ class in the lower-left side of Figure 4. 

FunctionLinear is noted as of summasion in equation (8). For 

example, FunctionLinear outputs f(x), which is equal to the 

right hand of equation (8), and is passed to the Graph class 

of RELU. RELU is shown in code of Figure 4. 

 
Fig. 5.  CIFAR-10 binary format 

V. EXPERIMENTAL RESULTS 

In the experiment, we ran our program on a workstation 

equipped with a CPU of Intel(R) Xeon(R) E5-2620 v4 

(2.10GHz) and 252G RAM. 

A. CIFAR-10 

CIFAR-10 is a standard dataset for benchmarking of image 

classification in computer vision and machine learning. 

CIFAR images are more eleborated than those in MMIST, 

which is another popular benchmark dataset. CIFAR is color 

with three channels for representing dynamic variation, while 

MNIST images are all grayscale and centered objects. Figure 

5 shows CIFAR-10 binary formats. The CIFAR-10 dataset 

has 32x32 color images. In addition, color images are 

classified into 10 classes, and CIFAR-10 has 6000 images. In 

detail, CIFAR-10 has 5000 images for the train and 1000 

images for the test. CIFAR-10 adopts two kinds of image 

format: Python pickle style and original binary format. We 

chose the original binary format. Figure 5 depicts the binary 

format of CIFAR-10. For example, The first 1 byte in Figure 

5 is several kinds of labels: airplane, automobile, bird, cat, 

deer, frog, horse, ship, and truck. The following 1024 bytes 

have a 32*32 pixel value of red color. 

B. Numerical outputs 

Figure 6 plots the change in the value of output values to the 

final layer. The epoch size is **, and the batch size is varied 

between 50, 100, 150, and 200. It is found that there is a 

significant difference in the characteristics of the transition of 

output value values to the final layer between SGD and 

Adam, depending on the batch size. In both SGD and Adam, 

there are batch sizes where the lower bounds of the data are 

stable (2, 4, 6, 7). For side, the lower bounds are stable at 1 

and 4, and for Adam, at 6 and 7. In the case of batch 50, SGD 

is stable, but ADAM is not. This may be due to the need for 

more information on past gradients in the case of ADAM. In 

contrast, SDG is not stable when the batch size is 200. This 

may be due to the batch size needing to be bigger. On the 

other hand, batch sizes 3 and 5 are also relatively unstable, 

but the cause is unclear. In any case, the experiment revealed 

that ADAM is not stable at batch sites 50 and 200. 
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Fig. 6.  Experimental result of ADAM and SGD   

VI. DISCUSSION 

As mentioned in the introduction, cases have been reported 

where adaptive optimization methods have failed to achieve 

satisfactory generalization performance on some data sets. 

This can be attributed to several optimization challenges in 

neural networks. 

▪ Many believe that most optimization difficulties in 

neural networks are due to extrema. In high-dimensional 

spaces, it is complicated to be sure that minima matter. 

This is because it requires a detailed scrutiny of the 

gradient norm. 

▪ It is known that for many high-dimensional nonconvex 

functions, there are many saddle points (points where 

the gradient is zero) and very few minima; Dauphin 

points out that the loss function of a high-dimensional 

neural network contains many computationally 

awkward saddle points. 
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▪ In some cases, the problem may be that almost all 

optimization methods in existence use temporary partial 

derivatives. Second-order partial derivative 

optimization methods have also been proposed but are 

very difficult to implement regarding memory 

constraints. 

VII.  CONCLUSION 

There is still much that is not known about the optimization 

of current neural networks. Even concerning adaptive 

optimizers, cases have been pointed out in which they do not 

provide adequate generalization performance. In this paper, 

we have implemented the backward automatic differentiation 

of neural networks from scratch and characterized adaptive 

optimizers. The proposed method tracked the input signal 

transition to the output layer and observed the optimizer's 

behavior by varying the batch size. The experimental results 

show that the behavior of regular SGD and ADAM, the 

adaptive optimizer, is significantly different in the cases of 

batch sizes of 50, 100, 150, and 200. Specifically, the time 

series of the input signal to the output signal was found to be 

unstable for batch sizes of 100 and 200 for SGD and 50 and 

150 for ADAM. The proposed method is independent of the 

optimization algorithm and can be applied to optimizers such 

as momentum-based NAGs 
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