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Motion Feature Extraction Using Second-order Neural Network

and Self-organizing Map for Gesture Recognition

Masato Aoba† and Yoshiyasu Takefuji††

We propose a neural preprocess approach for video-based gesture recognition system.
Second-order neural network (SONN) and self-organizing map (SOM) are employed for ex-
tracting moving hand regions and for normalizing motion features respectively. The SONN
is more robust to noise than frame difference technique. Obtained velocity feature vectors
are translated into normalized feature space by the SOM with keeping their topology, and
the transition of the activated node in the topological map is classified by DP matching. The
topological nature of the SOM is quite suited to data normalization for the DP matching
technique. Experimental results show that those neural networks effectively work on the ges-
ture pattern recognition. The SONN shows its noise reduction ability for noisy backgrounds,
and the SOM provides the robustness to spatial scaling of input images. The robustness of
the SOM to spatial scaling is based on its robustness to velocity scaling.

1. Introduction

Recent innovation in the area of comput-
ers enables us to utilize more advanced elec-
tronic devices in our lives, and the importance
of human-computer interaction (HCI) has been
increasing. When we operate a computer with
the keyboard and/or the mouse, they do not
necessarily fulfill our demand. As we encounter
to many scenes interacting with computers in
our daily lives, various kinds of HCI devices
such as remote control, touch-sensitive panel,
voice recognition and motion recognition etc.
have been developed 1),2). One of the effective
ways for the motion recognition is to use hand
gestures. Using hand gestures is a common
way for communications between human and
human, therefore the hand gesture recognition
system has a potential to be a useful HCI tool.

The video-based gesture recognition includes
time sequence analysis. Hidden Markov model
(HMM) is a major method for recognizing ges-
ture patterns 3)∼5). Although the HMM is effec-
tive for recognizing sequential patterns, it needs
many training data for the parameter tuning.
Sagawa, et al. 6) and Osaki, et al. 7) employed
dynamic programming (DP) matching for their
gesture recognition systems. The DP match-
ing shows a good performance to classify small
scale sequential patterns and needs no complex
algorithm to adjust its control parameters. On
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the other hands, artificial neural network mod-
els were embedded in some gesture recognition
systems. Ng, et al. applied RBF network to
classify hand shapes and used combination of
recurrent neural network and HMM to recog-
nize the changes in the hand shape 8). Lamar,
et al. proposed T-CombNET for temporal series
recognition and they applied it to hand gesture
recognition system 9).

In video based gesture recognition system,
motion feature extraction is much effective on
its recognition performance. Some researches
have utilized frame difference or background
subtraction for extracting moving objects 5),10),
and optical flow is also a popular method for
motion segmentation 11). Extracting skin color
regions is an effective way for hand gesture
recognition 4),12). Some neural models have
been proposed for motion extraction as proto-
types 13),14), however few real time software ap-
proaches have been proposed for video based
gesture recognition system. Yoshiike, et al. re-
ported that maximum neural network was ef-
fective to the noiseless motion extraction in ges-
ture recognition 15).

In this paper, we propose a neural prepro-
cess approach for video-based gesture recog-
nition system using two neural network mod-
els; second-order neural network (SONN) for
extracting moving hand regions, and self-
organizing map (SOM) for normalizing motion
features. Time sequential motion feature pat-
tern is classified by DP matching. Chashikawa,
et al. reported that second-order neural net-
work (SONN) has robustness to noise in ex-
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tracting moving objects 16). We employ this
model for moving hand region extraction. The
SOM is a well known neural network model in-
troduced by Kohonen 17) and it translates fea-
ture vectors into another feature space with
keeping its topology and data distribution. For
motion recognition, obtained velocity feature
vectors are translated into normalized feature
space represented as the topological map, and
a trajectory on this map is recognized as a time
sequential pattern. This is quite suited to the
DP matching technique since the distance on
the topological map approximates the proba-
bilistic distance in the original feature space.

We applied those ideas for recognizing twelve
hand gestures. Experimental results show
that the proposed system effectively works on
the gesture pattern recognition. The SONN
shows its noise reduction ability for noisy back-
grounds, and the SOM provides the robustness
to spatial scaling of input images. The robust-
ness of the SOM to spatial scaling is based on
its robustness to velocity scaling.

2. System Overview

We design a system to recognize velocity se-
quences of hand gestures. The overview of our
system is shown in Fig. 1.

In frame level process, preprocessing part ex-
tracts motion features from video images. RGB
video images are captured by a video camera
and are translated into L*a*b* images. Mov-
ing hand regions are extracted by SONN. Then
velocity vector is calculated as the change of
the gravity points on the moving hand region
between two frames, and it is translated into
motion feature by motion feature map (MFM)
trained by SOM. The system feeds the motion
features in time order as motion feature array
throughout a gesture. The motion feature ar-
ray is classified by DP matching and the system
generates the recognition results.

3. Motion Feature Extraction Using
SONN and SOM

3.1 Moving Hand Extraction
Input data to the preprocessing part are orig-

inally obtained by a video camera as a sequence
of RGB images. The RGB colors in the video
images are translated into L*a*b* color space
in order to extract a moving hand-region. L*
represents the luminance while a* and b* rep-
resent hue. To reduce the effect of luminance,
the preprocessing part should be more sensitive

Fig. 1 Overview of the system.

to a* and b* than L*.
In order to track the moving hand, moving

region is extracted from each frame. However,
frame difference technique and background sub-
traction method 18),19) are simple and feasible,
they are easily affected by noises. In order to
overcome the noise problem, Chashikawa and
Takefuji proposed that the second-order neu-
ral network (SONN) is effective for extract-
ing moving object 16). They demonstrated that
the SONN is more robust to temporal Gaus-
sian noise and generates more stable output
for a blank wall problem 24) than the frame
difference technique does. Their model has a
similar structure to pulse coupled neural net-
work (PCNN), which models a cat visual cortex
and was applied to some static image process-
ing 20),21). Chashikawa has attached a feedfor-
ward shunting mechanism 22) and static thresh-
old to PCNN structure for time sequential im-
age processing. We improved that model in or-
der to handle L*a*b* images for moving hand
region extraction. The structure of the SONN
for moving hand region extraction is shown in
Fig. 2.
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Fig. 2 Structure of SONN for moving hand region
extraction.

The binary output Oij(t) at time t corre-
sponding to the pixel (i, j) is calculated as fol-
lows,

Oij(t) =
{

1 if Uij(t) ≥ Θij(t)
0 otherwise

(1)

where Uij is the internal activity and Θij is the
dynamic threshold. The dynamic threshold Θij

is defined by,

Θij = θo

(
1 + ξ

∑
i,j

Uij(t)/(lh × lw)
)

(2)

where θo and ξ are the constant parameters.
lh and lw represent the image height and the
image width respectively. The internal activity
Uij(t) at time t is given by,

Uij(t) = Fij(t)
(
1 + βLij(t)

)
(3)

where Fij(t) is the feeding signal, Lij(t) is the
linking signal and β is the constant for the link-
ing strength. The feeding signal Fij(t) and the
linking signal Lij(t) are written by,

Fij(t) = γF

∑
k,j

WF
ijklOkl(t − 1)

+
∑
k,j

WR
ijklRkl(t)

+ exp(−τF )Fij(t − 1) (4)

Lij(t) = γL

∑
k,j

WL
ijkl

(
Okl(t − 1) − 1

)
+ exp(−τL)Lij(t − 1) (5)

where τF and τL are the attenuation constants
for the feeding and the linking signals. WF

ijkl,
WL

ijkl and WR
ijkl are the connection weights,

which are Gaussian kernels centered around
pixel (i, j). γF and γL are the normalization

Fig. 3 Example of moving hand region extraction.

constants for the connection weights. Note that
Okl(t−1) is the feedback signal from the binary
output. Rij(t) is the transient response which
is described as,

Rij(t) = γR

(
Sij(t) + exp(−τR)Rij(t − 1)

)
(6)

where Sij(t) is the input stimuli, τR is the at-
tenuation constant for the input stimuli, and
γR is the normalization constant. The input
stimuli Sij(t) is given by,

Sij(t) =
DL∗

ij (t) + Da∗
ij (t) + Db∗

ij (t)
3

(7)

DL∗
ij = CL∗ |IL∗

ij (t) − IL∗
ij (t − 1)| (8)

Da∗
ij = exp

(
−
(
Ia∗
ij (t) − ma∗

)2
σ2

a∗

)

× |Ia∗
ij (t) − Ia∗

ij (t − 1)| (9)

Db∗
ij = exp

(
−
(
Ib∗
ij (t) − mb∗

)2
σ2

b∗

)

× |Ib∗
ij (t) − Ib∗

ij (t − 1)| (10)

where IL∗
ij (t), Ia∗

ij (t) and Ib∗
ij (t) are the input

value at pixel (i, j) for L∗, a∗ and b∗ respec-
tively. CL∗ , ma∗ , mb∗ , σa∗ and σb∗ are the con-
stants to define the sensitivity to skin color.

An example of hand gestures is shown in
Fig. 3 and the white pixels indicate the re-
gion extracted by SONN. In this example, the
parameters are given as follows: CL∗ = 0.3,
ma∗ = 0, mb∗ = 1.5, σa∗ = 10, σb∗ = 20,
θo = 0.1, β = 0.4, τF = 5, τL = 3.5, τR = 20,
γF = 0.2, γL = 2.5, γR = 7, and the standard
deviations for WF , WL and WR are 5, 3 and 2
respectively.

A position of the moving hand is simply rep-
resented by a gravitational center of the moving
hand region. The center of gravity G(t) is given
by

G(t) =
1

NiNj

Ni∑
i

Nj∑
j

Oij(t)[i, j] (11)

where Ni and Nj represent the size of the input
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images.
3.2 Motion Feature Map
The system employs velocity transitions of

G(t) as the key to classification of motion pat-
terns. The velocity of the gravitational center
at time t is defined as

v(t) = G(t) − G(t − ∆t) (12)
where ∆t is the unit time for the velocity. Then
we define velocity array vector V(t) as an array
of v(t) to v(t−nv) where nv is a positive integer
constant.

V(t) = [v(t),v(t− 1), · · · ,v(t − nv)](13)
For the recognition part, the V(t) should

be normalized. Kohonen reported that self-
organizing map (SOM) is capable of map-
ping input feature vectors into different feature
space 17). The translation keeps topological re-
lationships between input vectors on the orig-
inal feature space, and also the feature map
quantizes the data distribution. We utilize the
topological map by SOM in order to normalize
the velocity array vector V(t).

2-dimensional topological SOM is a two
layered competitive network as illustrated
in Fig. 4. The competitive layer is a 2-
dimensional Nf × Nf array of output neurons,
which abides by winner-take-all rule. The out-
put signal yij of the ijth output neuron is cal-
culated as follows,

yij =
{

1 if i = iwin ∩ j = jwin

0 otherwise
(14)

||miwinjwin
− V|| = min

i,j
||mij − V|| (15)

where iwin and jwin are the indices of the win-
ner neuron, mij is the codebook vector. We
define motion feature x(t) at time t as follow-
ing equation.

x(t) = [iwin, jwin] (16)
The codebook vectors mij (i = 1, 2, · · · , Nf ,

j = 1, 2, · · · , Nf ) are adjusted by SOM learning
rule.

mij(s + 1) = mij(s) + η(s)Φ(s)dij (17)

Φ(s) = exp

(
−||[i, j] − [iw(s), jw(s)]||2

σ2
n(s)

)

(18)
dij(s) = Vp(s) − mij(s) (19)
||miw(s)jw(s)(s) − Vp(s)||
= min

i,j
||mij(s) − Vp(s)|| (20)

where s is the iteration step for learning proce-

Fig. 4 Structure of the 2-D topological SOM.

dure, iw(s) and jw(s) are the indices of the win-
ner neuron at step s, Vp(s) is the input pattern
vector at step s, η(s) is the learning rate and
σn(s) is the variable which defines the learning
rate of neighborhoods. η(s) and σn(s) should
have positive value respectively and decrease by
degree to zero as the step s grows up.

4. Recognition

In the recognition part, dynamic program-
ming (DP) matching is implemented. DP
matching is able to compare sequential data
to template pattern 23). This algorithm has
an ability to adjust distorted data to template.
Each motion category has a template, and a
similarity between the input motion pattern
and its motion template. The motion pattern
X is defined as a sequence of the input motion
feature x(t) at time t,

X = {x(1), · · · ,x(t), · · · ,x(tmax)} (21)
where t = 1 is the first frame of the motion pat-
tern and t = tmax is the last frame of the motion
pattern. The template Rq of the category q is
also defined as a sequence of the motion feature
rq(u) at time u.

Rq = {rq(1), · · · , rq(u), · · · , rq(umax)}
(22)

An accumulated cost Cq(X, t, u) is calculated
by the DP matching rule,

Cq(X, 1, 1) = ||rq(1) − x(1)|| (23)
Lq(X, 1, 1) = 0 (24)

Cq(X, t, u) = min




Cq1(X, t, u),
Cq2(X, t, u),
Cq3(X, t, u)


(25)

where Cq1(X, t, u), Cq2(X, t, u) and Cq3(X, t, u)
are described as follows.

Cq1(X, t, u) = Cq(X, t − 1, u)
+ ||rq(u) − x(t)|| (26)
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Cq2(X, t, u) = Cq(X, t − 1, u − 1)
+ 2||rq(u) − x(t)|| (27)

Cq3(X, t, u) = Cq(X, t, u − 1)
+ ||rq(u) − x(t)|| (28)

A length of the path Lq(X, t, u) is calculated
by

Lq(X, t, u)

=




Lq(X, t − 1, u) + 1
if Cq(X, t, u) = Cq1(X, t, u)

Lq(X, t, u) + 2
if Cq(X, t, u) = Cq2(X, t, u)

Lq(X, t, u − 1) + 1
if Cq(X, t, u) = Cq3(X, t, u)

(29)

Normalized accumulation cost Zq(X) is ac-
quired by following.

Zq(X) =
Cq(X, tmax, umax)
Lq(X, tmax, umax)

(30)

Recognition result qresult is obtained by find-
ing the category with minimum Zq(X) among
all q.

Zqresult
(X) = min

q
Zq(X) (31)

The template is figured out as averaged vec-
tors of time normalized input patterns. We de-
fine the parameter umax as a constant for the
size of the templates. The pth input motion
pattern Xq

p for the category q is normalized
into the motion feature sequence X′q

p which has
umax elements by linear interpolation. Then
the template for the category q is written as,

Rq =
1

Nq

∑
q

X′q
p (32)

where Nq is the number of the input motion
patterns for template Rq.

5. Gesture Recognition Experiments

5.1 Training Conditions
The system is trained to recognize twelve

hand-gesture patterns and the defined paths are
shown in Fig. 5. Training data were obtained
from three examinees at different backgrounds.
We label them as scene A, B and C respectively.
Figure 6 shows some images from the training
data movies. Three examinees performed all
gesture patterns 3 times each with right and
left arms. Thus 18 data were acquired for each
category and the total number of the training
data is 216. The movie data for the training
were captured by a video camera with appro-

Fig. 5 Defined motion patterns for the simulation.

Fig. 6 Example images from the training data
movies.

Fig. 7 Motion feature map.

priate format: the frame rate is 15 [fps] and the
image size is 80×60 [pixels]. The SONN has the
same condition as described in Section 3.1. The
parameters for the motion feature map (MFM)
are ∆t = 3, nv = 2 and Nf = 7.

5.2 Obtained Motion Feature Map
The obtained motion feature map (MFM)

calculated by SOM is shown in Fig. 7. Each
square corresponds to each codebook vector
mij in the MFM. Actually, the dimension of
the codebook vectors is 6, we divide the vec-
tor elements into three 2-dimensional velocity
vectors in order to visualize them in Fig. 7.

5.3 Example of System Internal States
An example of internal states of the system

for a test movie is shown in Fig. 8. The da-
tum fed to the system was performed by the
person at the scene A and belongs to the cat-
egory 10. Figure 8 (a) shows extracted moving
hand regions by SONN in some frames of the
input movie. Figure 8 (b) is the transition of
the activated node in the MFM. Figure 8 (c)
is a 3-dimensional plot of Fig. 8 (b) with time
axis. The normalized accumulation costs of the
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Fig. 8 Example of the calculation result.

DP matching templates are plotted in Fig. 8 (d),
and the template which has the lowest cost cor-
responds to the category 10.

5.4 Experimental Results
5.4.1 Recognition Rates
At first, we have tested 360 untrained data

to recognize the gestures in “known” situations.
The test data were obtained in the same condi-
tions as the training data, that is, the scene A,
B and C. They performed all gesture patterns
5 times each with right and left arms. Thus
10 data were used for each category for each
person, and 120 data were used for each scene.
Then we have tested 720 untrained data to rec-
ognize the gestures at “unknown” situations.
The test data were obtained from different six
persons from the persons in the “known” situ-
ations. They were also captured with different
background, and some of them were captured
closely to the video camera. We label them as
scene 1 to 6. Figure 9 shows some images from
the test data movies. The six examinees per-
formed all gestures 5 times each with right and
left arms. Thus 10 data were used for each cate-
gory for each person, and 120 data were used for
each scene. The results are shown in Fig. 10.

Fig. 9 Example images from “unknown” situation
movies.

Fig. 10 Recognition rates.

Fig. 11 Recognition rates of the system using frame
difference technique.

5.4.2 Comparative Experiments
We also examine systems which have some

different conditions from our original system;
1) a system using frame difference technique,
2) a system without the MFM.

At first, we replace the SONN in our system
with frame difference technique. This system
also uses skin-color regions extracted by thresh-
olding in the L*a*b* color space. The moving
hand region is calculated by “AND” operation
between the frame difference and the skin-color
regions. Its training and test conditions are the
same as those of the previous experiments de-
scribed in Section 5.4.1. The recognition results
for this modification are shown in Fig. 11.

Above mentioned, the SONN has robustness
to temporal Gaussian noise. This kind of noises
sometimes appear in the real world as vibra-
tions of clusters of small objects, for example,
rustling leaves, riffles, waving sunblind, and so
on. In order to verify the noise reduction ability
of the SONN, we prepared additional test data
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Fig. 12 Example images of the noisy background
movies.

Fig. 13 Comparison of the recognition rates for scene
N1 and N2.

Fig. 14 Recognition rates of the system without
MFM.

as scene N1 and N2. Example images in the
scene N1 and N2 are shown in Fig. 12. The
scene N1 and N2 contain an ornament wav-
ing by wind at each background. Note that
the color of these ornament is close to skin-
color, and they are not capable of ignoring them
by utilizing skin-color regions. The recognition
rates of the system using frame difference tech-
nique are compared with those of the system us-
ing SONN for the scene N1 and N2 in Fig. 13.

The second comparative system does not em-
ploy the MFM described in Section 3.2. The
velocity vector array is directly fed to the DP
matching process, therefore, the equation 16 is
replaced with the following equation so that.

x(t) = V(t) (33)
This omission of the MFM makes the sys-

tem incapable of normalizing the velocities. Its
training and test conditions are the same as
those of the other experiments. The recogni-
tion results are shown in Fig. 14.

In addition, we have investigated the robust-
ness of the MFM for image scaling. We trans-
lated the 80 × 60 [pixels] video images of the
scene 3 into following sized images; 60×45 [pix-
els] as s-75%, 40× 30 [pixels] as s-50%, 60× 60

Fig. 15 Distorted images from test data movies.

Fig. 16 Comparison of recognition rates for scaling-
down distortion.

Fig. 17 Comparison of recognition rates for vertical
scaling-down.

[pixels] as h-75%, 40 × 60 [pixels] as h-50%,
80 × 45 [pixels] as v-75%, 80 × 30 [pixels] as
v-50%, 160 × 120 [pixels] as s-200%, 240 × 180
[pixels] as s-300%, 80 × 120 [pixels] as v-200%,
80× 180 [pixels] as v-300%, 160× 60 [pixels] as
h-200% and 240 × 60 [pixels] as h-300%. Fig-
ure 15 shows the distortion of the video im-
ages. Comparisons of the recognition rates for
the image distortions are shown in Figs. 16,
17, 18, 19, 20 and 21. Figure 16 to Fig. 18
are the results for the scaling-down distortions,
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Fig. 18 Comparison of recognition rates for
horizontal scaling-down.

Fig. 19 Comparison of recognition rates for scaling-
up distortion.

Fig. 20 Comparison of recognition rates for vertical
scaling-up.

Fig. 21 Comparison of recognition rates for
horizontal scaling-up.

and Fig. 19 to Fig. 21 are those for the scaling-
up distortions, respectively.

6. Discussions

The recognition results of our system are
shown in Fig. 10. The results show that the
system has a high performance for recogniz-
ing gestures by various persons at various back-
grounds. Recognition rates for the category 3 in
the scene 5 are not high including comparative
experiments; see Figs. 10 (80 [%]), 11 (20 [%])
and 14 (0 [%]). In this situation, the exami-
nee tended to move his hand quite slowly and
horizontally like an ellipse during the motion

Fig. 22 Motion trajectories of category 3 (clockwise
circular rotation).

of the category 3 (clockwise circular rotation)
while the ideal motion trajectory forms a circle
(see Fig. 22), and it is difficult for the system
to distinguish the input motion from the cat-
egory 2 (waving hand). However, the SONN
and the MFM alleviate the difficulty, and this
is discussed later.

6.1 Moving Hand Extraction Using
SONN

As illustrated in Figs. 3 and 8, SONN well
extracts moving hand regions. Figures 10 and
11 show the recognition rates of our system us-
ing SONN and comparative system using frame
difference technique respectively, and it seems
that the SONN slightly improves the recogni-
tion performance. One of the characteristics of
the SONN is output stability for a blank wall
problem 16),24), and it is especially effective on
the recognition rate for the category 3 in the
scene 5. In this situation, a hand of the exam-
inee occupied rather large area and the motion
was quite slow, therefore, a kind of blank wall
problem sometimes occurred in the frame dif-
ference (see the bottom row of Fig. 23). This
caused the instability of extracting velocity fea-
tures and misclassification. On the other hand,
the SONN extracted the hand regions more sta-
ble (see the top row of Fig. 23). Figure 13 shows
the recognition rates of the both systems for
noisy background. It indicates that the SONN
is able to reduce more noises than the frame dif-
ference technique does. The comparative sys-
tem sporadically detects noises of skin color like
objects and returns a fallacious recognition re-
sult. On the other hand, the SONN eliminates
some degree of noises even if the noise is skin
colored (see Fig. 24). Therefore, the SONN
acts on scenes at noisy backgrounds more ap-
propriately than the frame difference technique.
The drawback of the SONN lies in the difficulty
in its parameter tuning, and the parameter tun-
ing problem is a future work.

The input signals for the SONN are frame
difference values in essentials. While the SONN
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Fig. 23 Examples of blank wall problems.

Fig. 24 Examples of extracted moving hand regions
at noisy background.

is able to adopt background subtraction values
as its input signals, this technique has a prob-
lem such that it is difficult to determine and
update a background since the background it-
self changes every second in the real world. In
our system, the frame difference should be fed
to the SONN since an object of interest is not
a whole person but a moving hand. Some re-
searchers proposed blob models for segmenting
images as to color information 25)∼27). The blob
models aslo have the robustness for random
noise and the stability for blank wall problem.
However, they have restrictions for initializing
the blobs. In most of the blob models, they use
the background subtraction for extracting an
object of interest during stable background in
order to create the initial blobs 25),26). Starner,
et al. utilized the blob model to gesture recog-
nition system and their system simply gener-
ates hand regions from skin-color 27). However,
their system cannot deal with the problem of
the background image including at least one
same skin-colored object.

For employing tracking algorithm, the sys-
tem easily finds a region of interest by using
the SONN since it generates a moving object
as a connected region and reduces background
noises. This alleviates the exceptional process
for noises in tracking procedure. When expand-
ing our system for two-hands gesture recogni-
tion, suitable tracking method should be tested
in our future work. Wren, et al. 28) and Bullock,
et al. 29) utilized Kalman filtering and Con-

Fig. 25 Examples of feature vector trajectories for
distorted movies.

densation algorithm respectively for blob based
hand tracking. They reported these methods
are efficient for occlusion, and their approaches
are of reference to the expansion of our system.

6.2 Motion Feature Map
Comparing the results in Figs. 10 and 14,

it seems that the absence of the MFM some-
what degrades the recognition rates. The most
significant difference between the system with
MFM and the system without MFM lies in the
recognition rate of the category 3 in the scene
5; 80 [%] for the system with the MFM and
0 [%] for that without the MFM respectively.
As mentioned above, the examinee moved his
hand slowly and elliptically. This is a kind of
distorted motion, and we can speculate that
the MFM provides robustness to the distortion.
The results of the comparative experiments in
Fig. 16 to Fig. 21 show the robustness. The re-
sults in Fig. 16 to Fig. 18 show that the MFM al-
leviates the effects of scaling-down distortions,
and those in Fig. 19 to Fig. 21 significantly in-
dicate the robustness of the MFM to scaling-up
distortions.

Figure 25 shows the motion feature tra-
jectories of the category 9 in the scene 3
with transforming by horizontal scaling. Fig-
ure 25 (a) shows the trajectories on the MFM,
and Fig. 25 (b) shows the trajectories in the
velocity feature space. (In order to illustrate
the trajectories in the 6-dimensional velocity
feature space, we define 2-dimensional vectors
[Vx, Vy] which have the same Euclidean norms
as the corresponding velocity array vectors and
have the directions calculated by averaging ve-
locity elements in the velocity array vectors.
We will use the same representation method in
the rest of figures when we illustrate the veloc-
ity feature space.) The projection of the MFM
to the velocity feature space is also shown in
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Fig. 25 (b). As described in Section 3.2, the
MFM is figured out by topological SOM and
the SOM quantizes and approximates data dis-
tribution with keeping their topology. The ex-
amples in Fig. 25 shows that the MFM allevi-
ates the distortion of the input motion feature

Fig. 26 Comparison of templates.

Fig. 27 Example of the motion feature trajectory and the history in the DP
matching of the system using MFM.

Fig. 28 Example of the motion feature trajectory and the history in the DP
matching of the system without MFM.

because of that trait of the SOM. This is suited
to the DP matching due to the robustness of the
DP matching to distortions in a certain range.

Here, DP matching templates on the MFM
and those in the velocity feature space are
shown in Fig. 26 (a) and (b) respectively. The
important point is that the templates on the
MFM are defined not by mapping the templates
in the velocity feature space but by averaging
motion patterns after mapping the motion fea-
tures. For this definition, motion features with
extremely large norm do not directly affect the
determination of templates, and it improves the
recognition performance for scaled motions. In
Figs. 27 and 28, the robustness of the MFM
for the scaling-down is explained by compar-
ing the recognition results of the system with
MFM and that without MFM. Both results
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Fig. 29 Example of the recognition failure due to
small velocity.

are for the same movie datum (the category
3 in the s-50%), and the two systems return
different recognition results; our system recog-
nized it correctly, and the other recognized it
as the category 2. Comparing the size of the
templates (see the left of the Fig. 27 and the
Fig. 28), the size difference between two tem-
plates in velocity feature space is larger than
that of the MFM. Thus, the size of the motion
feature trajectory influences the recognition by
the system without MFM than the shape does.
For example, the DP cost of the category 3
around the 11th DP path node (see the right
of the Fig. 28) is too high and it causes the mis-
classification. On the other hand, the size of the
template for the category 3 on the MFM is nor-
malized (see the left of the Fig. 27). In Fig. 27,
the influence of the trajectory size is alleviated
and the DP matching works well for compar-
ison of the trajectory shape among templates.
While the MFM gives the robustness to some
degree of scaling-down distortion, it has a limi-
tation since obtained velocities are not normal-
ized before mapping to the MFM. Figure 29
shows an example of recognition failure when
the velocities are too small to classify (the cat-
egory 9 of the s-50%). For solving this problem,
we should investigate a new scheme to normal-
ize the velocities before mapping to the MFM
for future work.

Next we discuss about the robustness to the
scaling-up distortion. Figure 30 shows the mo-
tion feature trajectory in the velocity feature
space for the category 8 in the s-300%. It is
clear that the system without MFM is not able
to classify the motion when velocity is quite
large. Figure 31 (a) shows the motion feature
trajectory on the MFM and the DP costs for the
same datum as shown in Fig. 30. Figure 31 (b)
shows those for the original size video images.

Fig. 30 Example of the motion feature trajectory and
the recognition result of the system without
MFM for scaling-up distorted movie.

Fig. 31 Comparison of the motion feature trajectories
for the scaling-up distorted movie with that
for the original size movie.

Most of the motion features are assigned to the
edge of the MFM. Then, the DP matching clas-
sifies the shape of the trajectory because that
all templates are normalized.

Then we shall observe the real datum. Fig-
ure 32 shows the motion feature trajectories
of the category 3 in the scene 5. The similar
phenomenon to that in Figs. 27 and 28 occurs
since the examinee moved his hand quite slowly,
and a partial distortion also occurs. The system
using the MFM correctly classifies it because
of the normalized templates and the quantiza-
tion of the MFM, and the system without MFM
classifies it as wrong category.

The robustness of our system to the image
scaling results from the robustness of the MFM
to the velocity scaling. On the contrary, the
MFM is not sensible to the velocity transfor-
mation and it might be hard for our system to
distinguish patterns when moving to the same
direction with different speed. We may note
about trade-off between the memory capacity
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Fig. 32 The motion feature trajectories and the DP
cost histories for a movie belongs to category
3 in scene 5.

of the MFM and the normalization ability. The
larger the number of the nodes, the larger the
number of motion patterns for gesture recogni-
tion. However, the increase of the number of
the nodes degrades the normalization ability of
the MFM for outliers. We should investigate a
new scheme to optimize the size of the MFM
for various conditions in our future work.

Our system employs the DP matching tech-
nique for classifying time sequential patterns.
The DP matching is a quite efficient method
for classifying small scale sequential patterns,
and the strong point of the DP matching is
its usability. Hidden Markov model (HMM) is
quite popular method for classifying time se-
quential patterns, while the HMM needs many
data for the parameter tuning since it is intrin-
sically a statistic method. For the DP matching
technique, its templates can be created by few
reference data, actually, our experiments show
good recognition performance even if it has not
been trained by so many data. Some existing
systems using HMM employ k-mean algorithm
to quantize its input vectors 4),5), however such
method is not available for data normalization
in the DP matching since it needs a feature vec-
tor space with topological information. Thus
the topology preservation of the SOM is suited
to data normalization for the DP matching.
In addition, when large quantities of training
data are obtained, each node in the MFM by
SOM is able to correspond to discrete symbols
for HMM since each node quantizes the feature
space. However, the topological property of the
SOM is nullified in that case.

7. Conclusion

We propose a neural approach for video-
based gesture recognition. We employ two
types of neural networks for gesture recognition;
1) SONN for extracting moving hand regions,
2) SOM for normalizing motion features. In-
put time sequence pattern is classified by DP
matching. Our experimental results show that
the system has a good performance to classify
twelve hand gesture patterns by various per-
sons at various backgrounds. By comparing
experimental results, we indicate that SONN
and SOM improve the performance of the sys-
tem. For situations with noisy backgrounds,
the SONN performs better than the frame dif-
ference technique does. The SOM provides the
robustness to spatial scaling distortion of input
video images, and this is based on its robustness
to velocity scaling. The topological property of
SOM is quite suitable to normalizing feature
vectors for DP matching technique.
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