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Zhao and colleagues [1] present an enhanced magnetite separation
prediction framework that integrates pulsed laser-induced magnetic
separation (PLIMS) with multifactor coupling, supervised machine
learning, and SHAP-based interpretability. The work addresses the
challenge of capturing nonlinear interactions among feed mineralogy,
slurry rheology, magnetic flux density, and laser pulse parameters that
determine separation efficiency, grade, and recovery.

The methodological approach to predictive modeling in complex,
interacting systems warrants consideration of validation strategies ap-
propriate for resource-constrained experimental settings. Unlike clini-
cal ML applications with abundant patient records [2,3], PLIMS data
generation involves significant equipment, materials, and time invest-
ment per datapoint. Within these constraints, Zhao et al.'s k-fold cross-
validation represents a practical approach. To further strengthen vali-
dation without excessive resource demands, stratified k-fold cross-
validation could ensure representation across operational regimes, and
reporting performance variation across folds would provide insight into
model stability.

A critical concern regarding Zhao et al.'s approach is the reliance on
SHAP for feature importance interpretation. Recent evidence demon-
strates that SHAP values, while widely used [4–9], can introduce signif-
icant biases, particularly when applied to tree-based models. Bilodeau
et al. [16] established formal impossibility theorems revealing funda-
mental limitations of feature attribution methods like SHAP. Huang and
Marques-Silva [17] further documented specific failings of Shapley val-
ues for explainability, while Kumar et al. [18] quantified the limitations
through Shapley residuals. This concern persists regardless of applica-
tion domain—whether clinical medicine or engineering. SHAP values
are inherently model-dependent (‘explain = SHAP(model)’), poten-
tially amplifying the underlying model's biases rather than revealing
true feature relationships [19]. High prediction accuracy does not nec-
essarily guarantee reliable feature importance rankings [20], as tree-
based models can exhibit skewed feature importance assessments favor-
ing variables utilized early in tree construction [10,11,21].

While Zhao et al. appropriately connect SHAP interpretations to
physical mechanisms, the interpretability could be further strengthened

by complementary statistical approaches. Non-parametric methods
such as Spearman's rho and Kendall's tau [22] would provide model-
agnostic assessments of monotonic relationships between features and
separation outcomes. For the complex dependencies and interactions
characteristic of PLIMS systems, methods such as Total correlation [23]
and Effective transfer entropy [24] could offer valuable insights inde-
pendent of model architecture. These approaches would require mini-
mal additional computational resources while potentially validating
and reinforcing the physics-based interpretations already presented.

We recognize that Zhao et al.'s work represents an important ex-
ploratory stage in PLIMS research, where establishing prediction accu-
racy is the primary goal. The physics-informed feature selection already
incorporated in their approach provides a strong foundation. Our rec-
ommendations for complementary statistical validation of feature im-
portance would enhance confidence in the identified relationships
without requiring additional experimentation.

For future development as the research matures, calibration assess-
ment and operational metrics in physical units (separation efficiency,
grade/recovery trade-offs, energy per separated mass) would enhance
evaluation of practical utility[12]. These assessments would become
particularly valuable when transitioning from exploratory research to
implementation planning.

We recommend that Zhao et al. [1] consider enhancing their foun-
dation by: (1) reporting cross-validation performance variation to
demonstrate model stability; (2) complementing SHAP analysis with
model-agnostic statistical methods to validate feature importance as-
sessments; and (3) where computationally feasible, assessing the stabil-
ity of key SHAP attributions. This integrated approach would leverage
the strengths of both machine learning and statistical analysis, provid-
ing more reliable insights into the key factors influencing PLIMS effi-
ciency [13–15].

This balanced methodology acknowledges the realities of resource-
intensive engineering research while addressing critical concerns about
feature importance interpretation, ultimately leading to more trustwor-
thy insights applicable to magnetite separation optimization.
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