

Evaluating the limitations of gradient boosting and SHAP in predicting magnetite separation performance in PLIMS

ARTICLE INFO

Keywords:

SHAP
Machine learning interpretability
PLIMS
Feature attribution
Physics-based modeling

Zhao and colleagues [1] present an enhanced magnetite separation prediction framework that integrates pulsed laser-induced magnetic separation (PLIMS) with multifactor coupling, supervised machine learning, and SHAP-based interpretability. The work addresses the challenge of capturing nonlinear interactions among feed mineralogy, slurry rheology, magnetic flux density, and laser pulse parameters that determine separation efficiency, grade, and recovery.

The methodological approach to predictive modeling in complex, interacting systems warrants consideration of validation strategies appropriate for resource-constrained experimental settings. Unlike clinical ML applications with abundant patient records [2,3], PLIMS data generation involves significant equipment, materials, and time investment per datapoint. Within these constraints, Zhao et al.'s k-fold cross-validation represents a practical approach. To further strengthen validation without excessive resource demands, stratified k-fold cross-validation could ensure representation across operational regimes, and reporting performance variation across folds would provide insight into model stability.

A critical concern regarding Zhao et al.'s approach is the reliance on SHAP for feature importance interpretation. Recent evidence demonstrates that SHAP values, while widely used [4–9], can introduce significant biases, particularly when applied to tree-based models. Bilodeau et al. [16] established formal impossibility theorems revealing fundamental limitations of feature attribution methods like SHAP. Huang and Marques-Silva [17] further documented specific failings of Shapley values for explainability, while Kumar et al. [18] quantified the limitations through Shapley residuals. This concern persists regardless of application domain—whether clinical medicine or engineering. SHAP values are inherently model-dependent ('explain = SHAP(model)'), potentially amplifying the underlying model's biases rather than revealing true feature relationships [19]. High prediction accuracy does not necessarily guarantee reliable feature importance rankings [20], as tree-based models can exhibit skewed feature importance assessments favoring variables utilized early in tree construction [10,11,21].

While Zhao et al. appropriately connect SHAP interpretations to physical mechanisms, the interpretability could be further strengthened

by complementary statistical approaches. Non-parametric methods such as Spearman's rho and Kendall's tau [22] would provide model-agnostic assessments of monotonic relationships between features and separation outcomes. For the complex dependencies and interactions characteristic of PLIMS systems, methods such as Total correlation [23] and Effective transfer entropy [24] could offer valuable insights independent of model architecture. These approaches would require minimal additional computational resources while potentially validating and reinforcing the physics-based interpretations already presented.

We recognize that Zhao et al.'s work represents an important exploratory stage in PLIMS research, where establishing prediction accuracy is the primary goal. The physics-informed feature selection already incorporated in their approach provides a strong foundation. Our recommendations for complementary statistical validation of feature importance would enhance confidence in the identified relationships without requiring additional experimentation.

For future development as the research matures, calibration assessment and operational metrics in physical units (separation efficiency, grade/recovery trade-offs, energy per separated mass) would enhance evaluation of practical utility [12]. These assessments would become particularly valuable when transitioning from exploratory research to implementation planning.

We recommend that Zhao et al. [1] consider enhancing their foundation by: (1) reporting cross-validation performance variation to demonstrate model stability; (2) complementing SHAP analysis with model-agnostic statistical methods to validate feature importance assessments; and (3) where computationally feasible, assessing the stability of key SHAP attributions. This integrated approach would leverage the strengths of both machine learning and statistical analysis, providing more reliable insights into the key factors influencing PLIMS efficiency [13–15].

This balanced methodology acknowledges the realities of resource-intensive engineering research while addressing critical concerns about feature importance interpretation, ultimately leading to more trustworthy insights applicable to magnetite separation optimization.

Compliance: The work is original, not under consideration elsewhere, and all authors approve submission to Powder Technology.

CRediT authorship contribution statement

Mustafa Arif: Writing – original draft, Resources, Investigation.
Yoshiyasu Takefuji: Writing – review & editing, Validation, Supervision.

Ethical approval

Not applicable (no human or animal subjects).

Funding

No funding was received for this work.

Declaration of competing interest

The authors declare no known competing financial interests or personal relationships that could have influenced the work

Data availability

No data was used for the research described in the article.

References

- [1] J. Zhao, F. Wang, J. Wen, H. Dai, L. Wu, Y. Guo, J. Pu, Enhanced magnetite separation prediction by PLIMS multifactor coupling based on machine learning and SHAP interpretability analysis, *Powder Technol.* (2025), <https://doi.org/10.1016/j.powtec.2025.121546>.
- [2] C. Ning, H. Ouyang, J. Xiao, et al., Development and validation of an explainable machine learning model for mortality prediction among patients with infected pancreatic necrosis, *EClinicalMedicine* 80 (2025), 103074 Published 2025 Jan 22. <https://doi.org/10.1016/j.eclim.2025.103074>.
- [3] W. Jiang, Y. Zhang, J. Weng, et al., Explainable machine learning model for predicting persistent Sepsis-associated acute kidney injury: development and validation study, *J. Med. Internet Res.* 27 (2025), e62932 Published 2025 Apr 28. <https://doi.org/10.2196/62932>.
- [4] J.Y. Kim, Improving appendix cancer prediction with SHAP-based feature engineering for machine learning models: a prediction study, *Ewha Med J.* 48 (2) (2025) e31, <https://doi.org/10.12771/emj.2025.00297>.
- [5] T. Arravalli, K. Chadaga, H. Muralikrishna, et al., Detection of breast cancer using machine learning and explainable artificial intelligence, *Sci. Rep.* 15 (1) (2025), 26931 Published 2025 Jul 24. <https://doi.org/10.1038/s41598-025-12644-w>.
- [6] J. Ma, Y. Fang, S. Li, et al., Interpretable machine learning algorithms reveal gut microbiome features associated with atopic dermatitis, *Front. Immunol.* 16 (2025), 1528046. Published 2025 May 1. <https://doi.org/10.3389/fimmu.2025.1528046>.
- [7] R. Zhu, Y. Zhang, J. Zhang, et al., Development and validation of an explainable machine learning model for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma: a multi-center study, *Int. J. Surg.* 111 (8) (2025) 5022–5035, <https://doi.org/10.1097/JJS.0000000000002641>.
- [8] S. Hur, Y. Lee, J. Park, et al., Comparison of SHAP and clinician friendly explanations reveals effects on clinical decision behaviour, *NPJ Digit. Med.* 8 (1) (2025) 578 Published 2025 Sep 26. <https://doi.org/10.1038/s41746-025-01958-8>.
- [9] D. Liang, L. Wang, P. Zhong, et al., Perspective: global burden of iodine deficiency: insights and projections to 2050 using XGBoost and SHAP, *Adv. Nutr.* 16 (3) (2025) 100384, <https://doi.org/10.1016/j.advnut.2025.100384>.
- [10] H. Prabhu, C.M. Ravishankar, A. Ganeshan, et al., Enhancing random forest model prediction of gas holdup in internal draft airlift loop contactors with genetic algorithms tuning and interpretability, *Sci. Rep.* 15 (1) (2025), 9325 Published 2025 Mar 18. <https://doi.org/10.1038/s41598-025-92728-9>.
- [11] T. Ali, K.C. Onyelowe, M.S. Mahmood, et al., Advanced and hybrid machine learning techniques for predicting compressive strength in palm oil fuel ash-modified concrete with SHAP analysis, *Sci. Rep.* 15 (1) (2025), 4997 Published 2025 Feb 10. <https://doi.org/10.1038/s41598-025-89263-y>.
- [12] S.M. Ganie, P.K. Dutta Pramanik, Z. Zhao, Enhanced and interpretable prediction of multiple cancer types using a stacking ensemble approach with SHAP analysis, *Bioengineering (Basel)*, 12 (5) (2025) 472 Published 2025 Apr 29. <https://doi.org/10.3390/bioengineering12050472>.
- [13] Y. Sha, Q. Yuan, Y. Du, et al., Integrating deep learning features from mammography with SHAP values for a machine learning model predicting over 5-year recurrence of breast ductal carcinoma *in situ* post-lumpectomy, *Front. Immunol.* 16 (2025), 1681072 . Published 2025 Sep 15. <https://doi.org/10.3389/fimmu.2025.1681072>.
- [14] M. Duan, Z. Geng, L. Gao, et al., An interpretable machine learning-assisted diagnostic model for Kawasaki disease in children, *Sci. Rep.* 15 (1) (2025), 7927 Published 2025 Mar 7. <https://doi.org/10.1038/s41598-025-92277-1>.
- [15] X. Wang, W. Tan, H. Sheng, et al., An interpretable machine learning model using multimodal pretreatment features predicts pathological complete response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma, *Front. Immunol.* 16 (2025), 1660897 Published 2025 Sep 16. <https://doi.org/10.3389/fimmu.2025.1660897>.
- [16] B. Bileodeau, N. Jaques, P.W. Koh, B. Kim, Impossibility theorems for feature attribution, *Proc. Natl. Acad. Sci.* 121 (2024) e2304406120, <https://doi.org/10.1073/pnas.2304406120>.
- [17] X. Huang, J. Marques-Silva, On the failings of Shapley values for explainability, *Int. J. Approx. Reason.* 171 (2024) 109112, <https://doi.org/10.1016/j.ijar.2023.109112>.
- [18] I. Kumar, C. Scheidegger, S. Venkatasubramanian, S. Friedler, Shapley residuals: quantifying the limits of the Shapley value for explanations, *Adv. Neural Inf. Proces. Syst.* 34 (2021) 26598–26608.
- [19] C. Molnar, G. König, J. Herbinger, et al., General pitfalls of model-agnostic interpretation methods for machine learning models, in: A. Holzinger, R. Goebel, R. Fong, T. Moon, K.R. Müller, W. Samek (Eds.), *xxAI - Beyond Explainable AI*, Springer, 2022, p. 4, https://doi.org/10.1007/978-3-031-04083-2_4.
- [20] Z.C. Lipton, The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery, *ACM Queue*, 16 (3) (2018) 31–57, <https://doi.org/10.1145/3236386.3241340>.
- [21] T.L. Mohamed Huti, E. Sawyer, A.P. King, An investigation into race bias in random forest models based on breast DCE-MRI derived radiomics features, in: *Clinical Image Based Procedures. Fairness, AI in Medical Imaging, Ethical and Philosophical Issues in Medical Imaging*, Springer, 2023, pp. 225–234, https://doi.org/10.1007/978-3-031-45249-9_22.
- [22] H. Yu, A.D. Hutson, A robust spearman correlation coefficient permutation test, *Commun. Statist. - Theory Methods* 53 (6) (2024) 2141–2153, <https://doi.org/10.1080/03610926.2022.2121144>.
- [23] T. Kerby, T. White, K.R. Moon, Learning local higher-order interactions with total correlation, in: *Proceedings of the 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP)*, 2024, pp. 1–6, <https://doi.org/10.1109/MLSP58920.2024.10734758>.
- [24] N.A. Caserini, P. Pagnoncelli, Effective transfer entropy to measure information flows in credit markets, *Statis. Methods Appl.* 31 (2022) 729–757, <https://doi.org/10.1007/s10260-021-00614-1>.

Arif Mustafa *PhD Candidate, Musashino University JAPAN* *, Yoshiyasu Takefuji *Professor, Musashino University JAPAN*
Graduate School of Data Science, Musashino University, Tokyo, Japan

* Corresponding author.
E-mail address: arifmustafa75@gmail.com (A. Mustafa).