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Euro Banknote Recognition System

Using a Three-layered Perceptron and RBF Networks

Masato Aoba,† Tetsuo Kikuchi†† and Yoshiyasu Takefuji†††

We propose an Euro banknote recognition system using two types of neural networks;
a three-layered perceptron and a Radial Basis Function (RBF) network. A three-layered
perceptron is well known method for pattern recognition and is also a very effective tool
for classifing banknotes. An RBF network has a potential to reject invalid data because it
estimates the probability distribution of the sample data. We use a three-layered perceptron
for classification and several RBF networks for validation. The proposed system has two
advantages over the system using only one RBF network. The feature extraction area can
be simply defined, and the calculation cost does not increase when the number of classes
increases. We also propose to use infra-red (IR) and visible images as input data to the
system since Euro banknotes have quite significant features in IR images. We have tested our
system in terms of acceptance rates for valid banknotes and rejection rates for invalid data.

1. Introduction

Many kinds of banknote recognition machines
are available in our society. They are very use-
ful devices to free people from bothering jobs in-
cluding counting banknotes, changing money or
vending tickets. On the other hand, it is a fact
that the recent advancement of copy machines
or scanners enables us to duplicate counterfeit
banknotes. While some recent copy machines
and scanners recognize banknotes for rejecting
them 1),2), while old ones do not have such func-
tion. Therefore, a demand for banknote recog-
nition machines for rejecting counterfeit ban-
knotes has been growing.

Banknote recognition systems using neural
networks to classify known banknotes have been
reported in some papers 3)∼5). Takeda et al.
proposed the use of multi-dimensional Gaussian
probability function for rejecting unknown ban-
knotes 6). In most cases, it is difficult to esti-
mate the data distribution by Gaussian func-
tion. In some patents, validation methods us-
ing neural networks are introduced. Eccles
reported that a Probabilistic Neural Network
(PNN) can reject some unknown data 7). The
PNN has a problem that the larger network
size, the larger the number of given classes
increases. Baudat proposed a system using
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a Learning Vector Quantization (LVQ) net-
work 8). While it solves the network size prob-
lem in a PNN, setting thresholds to reject un-
known data or outliers is very difficult since an
LVQ network originally makes Voronoi diagram
for classification.

Broomhead and Lowe introduced Radial Ba-
sis Function (RBF) network in 1988 9). The
RBF network model approximates data distri-
bution by probability distribution and it can re-
ject invalid data. Some papers reported autho-
rization system by using RBF network 10),11),
but any banknote recognition system using this
neural network model has never been reported
yet.

In this paper, we propose a banknote recog-
nition system composed of two parts; a classifi-
cation part and a validation part. The classifi-
cation part uses a three-layered perceptron and
the validation part uses several RBF networks.
While the three-layered perceptron is a well
known method for pattern recognition 12)∼14)

and is also very effective for classifing ban-
knotes, it makes boundaries only for classifing
given training data and is unassured of reject-
ing unknown data. As mentioned above, the
RBF network has a data approximation prop-
erty, which seems a proper tool for rejecting
unknown data.

It is able to configurate the system employ-
ing only one RBF network. If we consider an
one-phased RBF network method, it has two
problems. First, defining feature extraction ar-
eas in image data is quite complicated. Second,
the caclulation cost is in proportion to O(mn2),
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Fig. 1 Overview of the system.

where m is the number of kernels for each class
and n is the number of given classes. We have
designed two-phased method for solving these
problems. The feature extraction area can be
simply defined for each class. In addition, the
calculation cost of the validation part is inde-
pendent of the number of given classes. More
details of these topics are discussed in Section
7.

We apply our idea to Euro banknote recog-
nition system and also propose using infra-red
(IR) and visible images as input data to the sys-
tem since Euro banknotes have quite significant
features in IR images.

2. Overview of the System

The overview of the proposed system is shown
in Fig. 1.

The input data to the system are obtained by
an image sensor that has a green LED and an
IR LED. The sensor alternately lights a green
LED and an IR LED to get a visible image and
an IR image. Once the image sensor obtains
image data, the pre-processing component de-
tects edges of the banknote to transform images
into the right position and angle.

The recognition component obtains a pre-
processed image as an input and outputs a
recognition result. The recognition component
is divided into two parts; a classification part

Fig. 2 Overview of the classification part.

and a validation part.
In the classification part, a previously trained

three-layered perceptron is implemented and it
requires a visible image and an IR image as in-
put data. If an inserted banknote is classified
into a certain class, the result is inputted to the
validation part. Otherwise (in case the classifi-
cation is failed), the validation part is skipped
and the system outputs “REJECT”. More de-
tails of the classification part are described in
Section 3.

In the validation part, several trained RBF
networks are implemented and they require a
visible image and an IR image as input data.
The validation part outputs “ACCEPT” or
“REJECT”. If the validation result is “AC-
CEPT”, the system outputs the classification
result. Otherwise (in case the validation re-
sult is “REJECT”), the system outputs “RE-
JECT”. More details of the validation part are
described in Section 4.

3. Classification Part

The overview of the classification part is
shown in Fig. 2. In the classification part,
a three-layered perceptron is employed. The
structure of a three-layered perceptron is de-
scribed in Section 3.1. The visible image and
the IR image are transformed into multiresolu-
tional images, and significant input values are
selected from the multiresolutional images as
input vector to the three-layered perceptron.
The method selecting significant input values
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Fig. 3 Structure of a three-layered perceptron.

is described in Section 3.2. The three-layered
perceptron outputs the result of the classifica-
tion. In case the output of the three-layered
perceptron indicates that the inserted banknote
is one of the given classes, the banknote is la-
belled as the class index and the index is in-
putted to the validation part. Otherwise (in
case the output of the three-layered perceptron
shows that the inserted banknote cannot be as-
signed to any given classes or can be assigned
to more than two classes), the classification re-
sult is “REJECT”, then the validation part is
skipped and the final output of the system is
“REJECT”.

3.1 Three-layered Perceptron
A multi-layered perceptron is a kind of feed-

forward neural networks which is well known
tool for pattern recognition. In our system,
a three-layered perceptron is employed in the
classification part.

The structure of a three-layered perceptron is
shown in Fig. 3. A three-layered perceptron is
composed of an input layer, a hidden layer and
an output layer. Each input neuron is fully con-
nected to the hidden neurons and each hidden
neuron is fully connected to the output neu-
rons. The strength of the connection between
neuron i and j is represented by weight value
wij . The output of each neuron is calculated by
the sigmoidal function and the input of the sig-
moidal function is the sum of products of the
output values and the weight values from the
previous layer. The output of the neuron j and
a sigmoidal function are represented by

yj = f

(∑
i

wijyi

)
(1)

f(x) =
1

1 + exp(−x)
(2)

where f(x) is the sigmoidal function and yj is
the output of the neuron j.

Fig. 4 Concept of the reduction of input neurons.

The input value of each input neuron corre-
sponds to a component of an input vector x and
each output neuron corresponds to each class
index.

3.2 Multiresolutional Input Values
and Reduction of Input Neurons

The input data to the classification part are
extracted from rectangular central area of the
inserted banknote. The size of the available
area depends on the size of the smallest ban-
knote. Multiresolutional input values extracted
from the visible image and the IR image are
used as the input vector x to the three-layered
perceptron since image data has significant fea-
tures in various resolutions.

Note that if all of the multiresolutional in-
put values are used as input data, the dimen-
sion of an input vector becomes a huge number.
The dimension of the input vector should be re-
duced because it causes a difficulty of parame-
ter estimation and the problem is well known as
“curse of dimensionality” 15). Actually, some of
the input values are not significant features for
classification and they are able to be ignored.
Matsunaga et al. proposed a learning method
to remove redundant hidden neurons 16) and we
improve the method in order to remove redun-
dant input neurons.

The concept of reduction of redundant input
neurons is shown in Fig. 4 and its procedure is
explained as follows.

At first, the three-layered perceptron is
trained by backpropagation method 21). Con-
sider i and j are indices of the neurons, where
the neuron i is the previous neuron of the neu-
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ron j. The generalized delta rule is defined as
following equation,

∆wij = ηδjyi (3)
where δj is the error value at neuron j, yi is the
output of the neuron i, and η is the learning
rate.

If the neuron j is an output neuron, δj in
Eq. (3) is written as

δj = (tj − yj)f ′(netj) (4)
where f ′(x) = df(x)/dx and tj is the target
signal for the neuron j.

If the neuron j is a hidden neuron, δj is given
by

δj = f ′(netj)
∑

k

δkwkj (5)

where netj is the sum of products described by
following equation.

netj =
∑

k

wjkyk (6)

Once the network converges to a stable state
by the backpropagation method, the cost gi is
calculated for each input neuron i,

gi =
∑

p

∑
j

zipwij (7)

where j is the index of the hidden neuron, p
is the index of the input patten and zip is the
output value of the input neuron i for the pat-
ten p. The value of gi indicates the significance
of the input neuron i for classification in the
network. Therefore, if the input neuron i has
a great effect on classification, gi has a large
value. Conversely, the input neuron i whose gi

has the smallest value among all input neurons
is the most redundant neuron, and that neuron
can be removed.

Until the number of the input neurons be-
comes a certain number, the backpropagation
learning and the reducing redundant input neu-
rons is repeated.

4. Validation Part

The overview of the validation part is shown
in Fig. 5. In the validation part, the visible
image and the IR image are divided into some
small areas. The validation part is composed
of some validation blocks and each validation
block corresponds to each given class. A val-
idation block has several RBF networks and
each RBF network corresponds to each small
area in a image datum. For example, in case
the number of classes is L and the image data
are divided into K small areas, the validation

Fig. 5 Overview of the validation part.

Fig. 6 Structure of an RBF network.

part is composed of L blocks, each of which
has K RBF networks for each small area. The
validation part selects the proper block corre-
sponds to the classification result. Each small
area of the image data is transformed into the
input vector to assigned RBF network, and the
network outputs the validation result for that
small area. Only if the all outputs of the RBF
networks in the selected block are “TRUE”, the
output of the validation part is “ACCEPT” and
the system outputs the classification result as
the final output. Otherwise, the output of the
validation part is “REJECT” and the final out-
put of the system is “REJECT”.

4.1 RBF Network
A Radial Basis Function (RBF) network 9) is

a three-layered network that consists of an in-
put layer, a hidden layer and an output layer.
The structure of an RBF network is shown in
Fig. 6. Each input neuron corresponds to a
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component of an input vector x. Each hid-
den neuron calculates a kernel function which is
usually defined by Gaussian function. Here we
define the kernel function hj(x) for the hidden
neuron j by the following equation,

hj(x) = exp(−(x − cj)TRj(x − cj)) (8)
where cj is the center of the hidden neuron j.
Rj is a M ×M diagonal matrix defined by ker-
nel width vector σj as

Rj = diag

(
1

2σ2
j1

, . . . ,
1

2σ2
jM

)
(9)

where M is the dimension of the input vector
x.

In a general RBF network, the output layer
has more than two neurons for classification.
In our system, only one output neuron is nec-
essary for each RBF network in the validation
part because the RBF networks in this part do
not perform classification process. Only each
RBF network has to do is to validate each small
area. Here we consider the special case that an
RBF network has only one neuron in the output
layer.

An output neuron is fully connected to the
hidden layer and the output value is calculated
by

y(x) =
N∑
j

hj(x)wj (10)

where N is the number of the hidden neurons in
the hidden layer and wj is the weight between
the hidden neuron j and the output neuron.

Some learning methods for an RBF network
were also reported 17),18). Schwenker, et al.
reported that the three-phase learning with
Learning Vector Quantization (LVQ) is the best
learning method for an RBF network 19). Note
that LVQ is equivalent to Self-Organizing Map
(SOM) 20) in our system since the RBF net-
works in the validation part have only one out-
put neuron. We use the three-phase learning
using SOM.

In the first phase, the centers of the hidden
neurons are adjusted by SOM. The learning rule
of SOM at the time t is described by

∆cj∗ = α(t)(x− cj∗) (11)
where cj∗ is the nearest hidden neuron vector
to the input x and α(t) is the learning rate. For
convergence, α(t) should have a small positive
value and decrease by degree to zero as the time
t grows up.

In the second phase, the kernel widths and

output weights are temporarily determined.
The components of kernel width vector σj are
set as the average of the distance to the p near-
est hidden neuron vectors of cj . After that, the
output weights are adjusted by delta learning
rule

∆wj = ηhj(x)(y − F ) (12)
where η is a learning rate and F is the target
signal.

In the third phase, backpropagation learning
is applied to improve the performance of the
network. Parameters wj , cj and σj are read-
justed by the following rules:

∆wj = ηhj(x)(y−F ) (13)

∆cjk = ηhj(x)
xk−cjk

σ2
jk

wj(y−F ) (14)

∆σjk = ηhj(x)
(xk−cjk)2

σ3
jk

wj(y−F ) (15)

where η is a learning rate and k is the index of
the component of the input vector x.

4.2 Feature Extraction and Dividing
into Small Areas

The visible image and the IR image are used
as input data to the validation part. The avail-
able area is extracted from the image data. It is
defined as a rectangular area that does not con-
tain the vicinity of the banknote edges since the
features around the edges are affected by wrin-
kles, creases, cuts, and so on. The size of the
available area depends on the banknote class
which the classification result indicates. More-
over, the available area is divided into the same
sized small areas and each small area is trans-
formed into the input vector x to each RBF
network. Each input vector are normalized in
each area. Dividing an available area into some
small areas aims at the effectiveness of using
local features and at avoiding “curse of dimen-
sionality”. That is, if the available area is not
divided, the input dimension of an RBF net-
work in the validation block becomes large and
the network becomes irresponsive to local fea-
tures.

5. Training Conditions

The system is designed for recognizing all
kinds of Euro banknotes (EUR 5, 10, 20, 50,
100, 200 and 500). We use 200 pieces of
new banknotes for each kind of Euro ban-
knotes for training. The size of the available
area in image data for the classification part
is defined as 58 [mm]×110 [mm] and it depends
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Fig. 7 Mahalanobis distances from EUR 5 image
data to training data.

Fig. 8 Mahalanobis distances from EUR 10 image
data to training data.

on the size of the EUR 5 (62 [mm]×120 [mm])
because EUR 5 is the smallest one among
other Euro banknotes. The sizes of dots
are defined as 4 [mm]×4 [mm], 8 [mm]×8 [mm],
16 [mm]×16 [mm] and 32 [mm]×32 [mm]. The
number of the hidden neurons in the three-
layered perceptron is 64. The initial number
of the input neurons is 416 (208 neurons for a
visible image and 208 neurons for an IR image),
and it is finally reduced to 64.

Each size of available area for the validation
part is defined for each banknote and is divided
into eight small areas, therefore each validation
block has eight RBF networks for each ban-
knote class. Thus, the total number of RBF
networks is 8(areas) × 7(classes) = 56. Each
size of all dots in image data is 4 [mm]×4 [mm].
The number of the hidden neurons in each RBF
network is 20. The number of the input neu-
rons in each RBF network is 60 (for EUR 5 and
10), 72 (for EUR 20 and 50) and 98 (for EUR
100, 200 and 500), respectively.

6. Experimental Results

We have tested several types of configura-
tions and various kinds of input data to verify

Fig. 9 Mahalanobis distances from EUR 20 image
data to training data.

Fig. 10 Mahalanobis distances from EUR 50 image
data to training data.

the performance of our system. This section is
divided into three subsections for each experi-
ment. In Section 6.1, we use valid banknotes as
input data to the system in order to verify the
acceptance performance. In Section 6.2, we use
various invalid data as input data to the system
in order to verify the rejection performance. In
Section 6.3, the system is tested on the various
conditions in order to represent superiority of
our system.

Before showing the experimental results, we
show similarity between training data and ex-
perimental data. Mahalanobis distance is a use-
ful way of measuring the similarity between a
datum and a data set. The Mahalanobis dis-
tance between an experimental datum x and a
training data set Sk for class k is calculated by

d2 = (x− mSk
)TC−1

Sk
(x− mSk

) (16)

where mSk
is the mean vector of Sk and CSk

is the covariance matrix for Sk. We used
4 [mm]×4 [mm] resolutional image data ob-
tained by the pre-processing component. Fig-
ures 7–13 show the Mahalanobis distances of
training and experimental data from the train-
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Fig. 11 Mahalanobis distances from EUR 100 image
data to training data.

Fig. 12 Mahalanobis distances from EUR 200 image
data to training data.

Fig. 13 Mahalanobis distances from EUR 500 image
data to training data.

ing data set. The boxes in those diagrams rep-
resent the range of the distribution from 10[%]
to 90[%].

6.1 Acceptance Performance
We use other 200 pieces of “new” banknotes

and 200 pieces of “dirty” banknotes for each
kind of Euro banknote to verify the acceptance
performance of the system for valid banknotes.

Table 1 and Table 2 show the acceptance

performance of the system. The “classifica-
tion part” row shows the acceptance rates of
the classification part. The “validation part”
row shows the acceptance rates of the valida-
tion part for classified banknotes. The final ac-
ceptance rates of the system are the products
of the acceptance rates of the classification part
and that of the validation part. They are shown
in the “system performance” row.

Table 1 presents the results for the “new”
banknotes. Table 2 presents the results for the
“dirty” banknotes.

6.2 Rejection Performance
In order to verify the rejection performance

of the system for invalid data, we use two sets
of the invalid data as the input data to the val-
idation part; simulated color-copied data and
size-normailzed data. We have tested the clas-
sification part at the same condition in the next
subsection as comparative experiments.

Although we should verify the rejection per-
formance for color-copied banknotes, copying
banknotes is illegal. We create image data
whose properties are close to those of real color-
copied banknotes by modifing IR image part of
valid data. Table 3 and Table 4 show the
rejection performance of the validation part for
200 simulated color-copied data for each kind of
Euro banknote. Table 3 presents the results for
the simulated color-copied data modified from
new banknotes. Table 4 presents the results for
the simulated color-copied data modified from
“dirty” banknotes of EUR 5, 10, 20 and 50.

Next we use size-normalized different kinds of
Euro banknotes since the basic design of Euro
banknotes resemble another kind of Euro ban-
knotes. Table 5 and Table 6 show the re-
jection performance of the validation part for
200 size-normalized data for each kind of Euro
banknote. Table 5 presents the results for the
size-normalized data modified from new ban-
knotes. Table 6 presents the results for the size-
normalized data modified from “dirty” ban-
knotes of EUR 5, 10, 20 and 50.

Note that the results in Table 3 to Table 6
are indicated by “acceptance rates” for invalid
data. If all input data are rejected, the results
in those tables become 0.0[%].

6.3 Comparative Experiments
In order to test if our system has a good per-

formance, the system is tested on various con-
ditions.

At first, we verify the rejection performance
of the classification part in order to show the
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Table 1 Acceptance rates for valid banknotes [%].

EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

classification part 100.0 100.0 100.0 100.0 100.0 100.0 100.0
validation part 100.0 100.0 99.5 100.0 100.0 100.0 100.0

system performance 100.0 100.0 99.5 100.0 100.0 100.0 100.0

Table 2 Acceptance rates for “dirty” banknotes [%].

EUR 5 EUR 10 EUR 20 EUR 50

classification part 100.0 100.0 100.0 100.0
validation part 99.0 100.0 99.0 100.0

system performance 99.0 100.0 99.0 100.0

Table 3 Acceptance rates for simulated color-copied data in validation part [%].

EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

validation part 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4 Acceptance rates for simulated color-copied data modified from
“dirty” banknotes in validation part [%].

EUR 5 EUR 10 EUR 20 EUR 50

validation part 0.0 0.0 0.0 0.0

Table 5 Acceptance rates for size normalized data in validation part [%].

size normalized data of
validation block for EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

EUR 5 – 0.0 0.0 0.0 0.0 0.0 0.0
EUR 10 0.0 – 0.0 0.0 0.0 0.0 0.0
EUR 20 0.0 0.0 – 0.0 0.0 0.0 0.0
EUR 50 0.0 0.0 0.0 – 0.0 0.0 0.0
EUR 100 0.0 0.0 0.0 0.0 – 0.0 0.0
EUR 200 0.0 0.0 0.0 0.0 0.0 – 0.0
EUR 500 0.0 0.0 0.0 0.0 0.0 0.0 –

Table 6 Acceptance rates for size normalized data modified from “dirty”
banknotes in validation part [%].

size normalized data of
validation block for EUR 5 EUR 10 EUR 20 EUR 50

EUR 5 – 0.0 0.0 0.0
EUR 10 0.0 – 0.0 0.0
EUR 20 0.0 0.0 – 0.0
EUR 50 0.0 0.0 0.0 –
EUR 100 0.0 0.0 0.0 0.0
EUR 200 0.0 0.0 0.0 0.0
EUR 500 0.0 0.0 0.0 0.0

Table 7 Acceptance rates for simulated color-copied data in classification part [%].

EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

classification part 0.0 31.0 67.5 100.0 44.5 0.0 0.0

necessity of the validation part. Table 7 shows
the rejection performance for simulated color-
copied data and Table 8 shows the rejection
performance for size normalized data in the
classification part.

Next, we test the validation part by using
only visible images as input data in order to ap-
pear that IR images are necessary for Euro ban-
knote validation. The acceptance performance

for valid banknotes and the rejection perfor-
mance for size-normalized data are shown in
Table 9 and Table 10 respectively.

The invalid data used in the experiments for
Table 7 and Table 8 are the same data as in Sec-
tion 6.2. Here, we use 200 invalid data modified
from “new” banknotes for each banknote. The
valid data used in the experiment for Table 9
are the same data as in Section 6.1. The in-
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Table 8 Acceptance rates for size normalized data in classification part [%].

size normalized data of
size-based banknote EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

EUR 5 – 98.0 59.0 6.0 3.0 6.5 21.0
EUR 10 97.5 – 100.0 79.0 19.5 19.0 33.0
EUR 20 54.0 99.0 – 99.0 74.5 48.5 15.0
EUR 50 48.5 73.0 99.5 – 100.0 79.5 35.5
EUR 100 0.0 34.0 96.5 100.0 – 100.0 100.0
EUR 200 69.0 61.0 93.5 99.5 100.0 – 100.0
EUR 500 89.0 99.0 99.5 100.0 100.0 100.0 –

Table 9 Acceptance rates for simulated color-copied data in validation part
using only visible image data [%].

EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

validation part 94.0 99.0 99.0 98.0 99.0 94.5 100.0

Table 10 Acceptance rates for size normalized data in validation part
using only visible image data [%].

size normalized data of
validation block for EUR 5 EUR 10 EUR 20 EUR 50 EUR 100 EUR 200 EUR 500

EUR 5 – 11.5 16.0 2.5 0.5 17.0 1.5
EUR 10 11.5 – 14.5 0.0 0.0 0.0 0.0
EUR 20 22.0 22.5 – 0.0 0.0 13.5 0.0
EUR 50 5.0 0.0 0.0 – 0.0 0.5 1.0
EUR 100 4.0 0.0 0.0 22.5 – 34.5 0.0
EUR 200 26.5 0.0 1.5 1.0 0.0 – 0.0
EUR 500 0.0 0.0 0.0 0.0 0.0 0.0 –

valid data used in the experiment for Table 10
are size-normalized data without IR features.
Note that the results in all tables are indicated
by “acceptance rates”. If all input data for re-
jection test (Table 7, Table 8 and Table 10)
are rejected, the results in those tables become
0.0[%].

7. Discussion

The results of acceptance rates of the system
for valid banknotes are shown in Table 1 and
Table 2. These results assure that the system
has a good performance for accepting valid ban-
knotes. On the other hand, Table 3 to Table 6
show that the results of rejection performance
for invalid data are 0.0[%] as acceptance rates.
These results show that the validation part per-
forms perfectly for rejecting invalid data in our
test. Note that any negative data had not been
given to the validation part at learning proce-
dure, that is, RBF networks made boundaries
to reject invalid data by themselves. From these
results of the acceptance performance and the
rejection performance, the system we proposed
has a good performance for both accepting valid
banknotes and rejecting invalid data.

The results in Table 7 and Table 8 show the
necessity of the validation part, i.e., the RBF

networks, in our system. If the rejection per-
formance of the three-layered perceptron is per-
fect, the RBF networks are not necessary for
validation. Table 7 and Table 8 show the classi-
fication part in itself has a poor performance for
rejecting color-copied data and size-normalized
data. The poor performance is based on the
fact that the backpropagation method for a
three-layered perceptron does not promise per-
formance for unknown data. Thus the classifi-
cation part should only classify the input data
and the validation part is quite important in
our system.

The results in Table 9 and Table 10 show the
significance of the features in IR images for val-
idation. In these experiments, we verified the
performance of the validation part using visible
images for accepting valid banknotes and re-
jecting size-normalized data. The results show
that the validation part using only visible im-
ages has a poor performrnce for accepting valid
banknotes and rejecting invalid data. We have
adjusted the output thresholds of the RBF net-
works in order to improve the acceptance or
rejection performance, and it was not able to
improve both acceptance and rejection perfor-
mance at the same time. When the thresh-
olds become higher, the rejection performance
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is improved and the acceptance performance
becomes worse. When the threshold becomes
lower, the acceptance performance is improved
and the rejection performance becomes worse.
The validation part using only visible images is
not tested for rejection performance of color-
copied data, since it is obvious that the re-
jection performance would become worse be-
cause that color-copied visible images are al-
most same as the visible images of valid ban-
knotes. The results show that the IR image in
the validation part for Euro banknote is neces-
sary.

Here we discuss the advantages of dividing
the system into two parts. We have already
mentioned that a three-layered perceptron is
not suitable for validation. An RBF network
has a function of a classifier and a validator. It
is able to configurate the system employing only
one RBF network which has as many output
neurons as the number of classes. However, it
has two problems. First, definition of the avail-
able area in image data is complicated. For one
RBF network, the size of the available area is
fixed for all inserted banknotes, and each ban-
knote class has its own size which is different
from other classes. If the size of the available
area is fixed to that of the smallest banknote,
some parts of image data in a larger banknote
are lost. If the size of the available area is
fixed to that of the largest banknote, redun-
dant data around a smaller banknote are used
as input data. Especially, the size of Euro ban-
knotes has many size variations. Second, the
calculation cost increases when the number of
the given classes becomes larger. The calcula-
tion cost is in proportion to O(mn2) where m
is the number of kernels for each class and n
is the number of given classes. The network
should have mn hidden neurons because the
accuracy of an RBF network is determined by
the number of the hidden neurons assigned to
each classes. Therefore, for n output neurons,
the number of connections between the hidden
layer and the output layer is mn × n = mn2.
Our proposed system, which is divided into two
parts, solves these problems. For the first prob-
lem, each size of the available area can be de-
fined simply for each class because the valida-
tion part has each validation block for each ban-
knote class. The system can use image data
efficiently for validation. For the second prob-
lem, the size of each RBF network does not
depend on the number of the classes because

of the independence of the validation part from
the classification part. Each RBF network has
m hidden neurons respectively and the calcu-
lation cost of the validation part is in propo-
tion to O(m). The calculation cost does not in-
crease when the number of the classes increases.
While the size of the three-layered perceptron in
the classification part depends on the number
of classes, the classification part is less influ-
enced than the validation part because the size
of the three-layered percetron becomes smaller
than the size of the RBF networks by reducing
redundant input neurons.

8. Conclusion

We propose an Euro banknote recognitnion
system composed of a three-layered perceptron
for classification and RBF networks for valida-
tion. We also presented to use IR and visible
images as input data to the system.

The system has a good performance for both
accepting valid banknotes and rejecting invalid
data. By comparing experimental results, we
showed the classification part using a three-
layered perceptron cannot reject all invalid data
in itself, and it is effective to use the validation
part using RBF networks. In addition, the ad-
vantages in dividing the system into two parts
are shown in our discussion. We also verify the
performance of the validation part without IR
images, and the results show that IR images are
quite significant for Euro banknote validation.
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