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High-order RNA structures are involved in regulating many biological processes; various algorithms have been designed to 
predict them. Experimental methods to probe such structures and to decipher the results are tedious. Artificial intelligence 
and the neural network approach can support the process of discovering RNA structures. Secondary structures of RNA 
molecules are probed by autoradiographing gels, separating end-labeled fragments generated by base-specific RNases. This 
process is performed in both conditions, denaturing (for sequencing purposes) and native. The resultant autoradiograms are 
scanned using line-detection techniques to identify the fragments by comparing the lines with those obtained by 'alkaline 
ladders'. The identified paired bases are treated by either one of two methods to find the foldings which are consistent with 
the RNases' 'cutting' rules. One exploits the maximum independent set algorithm; the other, the planarization algorithm. They 
require, respectively, n and n 2 processing elements, where n is the number of base pairs. The state of the system usually con- 
verges to the near-optimum solution within about 500 iteration steps, where each processing element implements the 
McCulloch-Pitts binary neuron. Our simulator, based on the proposed algorithm, discovered a new structure in a sequence of 
38 bases, which is more stable than that formerly proposed. 

Keywords: High-order RNA structures; Biological regulation; Artificial intelligence; Neural nets; Maximum independent set; 
planarization algorithms. 

1. Introduction 

The four common bases of an RNA molecule 
are cytosine (C), uracil (U), adenine (A) and 
guanine (G). The double-helix of an RNA forms 
when two separate sections (with a 5'-end to 3 '- 
end polarity) become linked together in an anti- 
parallel manner by weak hydrogen bonds be- 
tween specific, complementary bases: A always 
pairs with U and G pairs with C. The primary 
structure of RNA is defined as its linear base se- 
quence. The secondary structure is determined 
by its folding into a two-dimensional shape. 
Folding into a three-dimensional shape is called 
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tertiary structure and structures formed by in- 
teractions with other molecules are quaternary. 

RNA molecules are involved in a wide range of 
functions in the living world, exerted in part  by 
the three-dimensional conformations to which 
they can fold (e.g., Zaritsky et al., 1988; 
Dahlberg and Abelson, 1989 and 1990; Puglisi 
et al., 1991). The stability of a structure is 
measured by the free-energy difference between 
folded and unfolded forms. An RNA sequence 
can often form alternate structures of similar 
stabilities, which may be the reason for its role 
in various processes (e.g., translation). Predic- 
tions of the secondary structure of RNA, that is, 
its base-pairing pattern (whether based on free 
energy calculations or distance geometries or in- 
ferred from compensatory mutations; e.g., 
Zuker and Stiegler, 1981; Williams and Tinoco, 
1986; Martinez, 1988; Zuker, 1989a,b; Mei et al., 
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1989; Takefuji et al., 1990a and b; Major et al., 
1991) are more reliable than those predicted for 
proteins from amino acid sequences (Karplus 
and Petsko, 1990). 

1.1. Current approaches to predicting secondary 
RNA structures 

Fresco (Fresco et al., 1960) used the first 
model to predict secondary structures in RNA. 
Two types of algorithms have been reported: the 
combinatorial method (Pipas and McMahon, 
1975) and the recursive (or dynamic programm- 
ing) method (Nussinov et al., 1978). Both 
algorithms, as well as the latest method propos- 
ed by Zuker (1989b), are based on sequential 
computation. Unfortunately, few parallel 
algorithms based on molecular thermodynamics 
models have been reported. Recently, Qian and 
Sejnowski (1988) and Holley and Karplus (1989) 
have reported a backpropagation algorithm 
using a three-layer-feed-forward neural network 
for protein secondary structure prediction. 
Their method is based on the correlation be- 
tween secondary structure and amino acid se- 
quences, but has the following drawbacks as 
compared with the conventional RNA folding 
algorithms based on molecular thermodynamics 
models: (1) they need a teacher to force the net- 
work to learn the correlation between a second- 
ary structure and an amino acid sequence; (2) 
they cannot provide an accurate prediction if a 
completely uncorrelated new datum is given 
where the previously learned correlation infor- 
mation is useless; (3) their feed-forward neural 
network requires a prohibitively long learning 
process to deal with a long sequence of bases for 
RNA secondary structure prediction; (4) no 
theorem is given to determine the neural net- 
work architecture including how many hidden 
layers and how many hidden neurons per hidden 
layer should be used. Our algorithms (Takefuji 
et al. (1990a and b); and see Section 2) requires 
neither a teacher nor a learning process. The 
proposed maximum independent set parallel 
algorithm can yield the suboptimum solution 
within several hundred iteration steps using n 
processors (where n is the number of possible 
base pairs). 

Generally speaking, the existing algorithms 
can be classified into three quite different ap- 
proaches. One approach is a phylogenetic struc- 
ture analysis of homologous RNAs that depends 
on multiple alignment of the molecules (Jaeger 
et al., 1989; Le and Zuker, 1991). Helix conser- 
vation is scored by a ratio of the number of times 
that the helix occurs in suboptimal foldings. The 
combination of compatible helices generates a 
secondary structure of the statistically more 
significant ones. 

The property of RNA molecules to fold has 
yielded algorithms of the second approach, that 
compute optimal foldings with mathematical 
tools, based on either maximizing the number of 
pairings or minimizing the free-energy. Recur- 
sive algorithms have been used and a collection 
of secondary structures that can be found close 
to the energy minimum are generated (Le and 
Zuker, 1991). Using Turner et al.'s (1987) 
energy rules, the computer prediction accuracy 
was elevated to 70%. Predictions made within 
10% of the lowest free energy include in them 
up to 90% of the phylogenetically known helices. 
Of course, the main problem remains to be solv- 
ed, i.e., choosing the correct structure occurring 
in any given natural RNA. In addition, 
algorithms of this type require computer time 
proportional to n m, where n is the number of 
variables and m the number of permitted values. 

A third, new approach, that  of neural 
representation, encodes the problem using arti- 
ficial neurons (Steeg, 1989; Takefuji et al., 
1990a and b). A fired neuron represents a possi- 
ble base pair like G-C and A-U. This method 
resides in the energy family and the idea is to 
find the largest number of base pairs which will 
prove to have the minimum energy. Use of 
graph theory solution for finding the largest 
planar subgraph or the maximum independent 
set permit finding the largest set base pairs. 
Among the diverse structures, the more 
knowledge and rules from experts embedded in 
the neural network, the better is the solution 
and the faster it is obtained. 

These models, albeit theoretical, do consider 
actual information available about chemical in- 
teractions between bases. For example, the 



87 

nearest neighbor model approximates the 
stability of an RNA duplex by the sum of the 
free energy increments for all its ten nearest 
neighbors in the duplex provided by various 
measurements (e.g., Freier et al., 1986; Turner 
et al., 1987; Jaeger et al., 1989). However, the 
algorithms based on free energy minimization or 
distance geometry are limited because solutions 
might represent local minima, depending on the 
input structure, rather than the global 
minimum. There can therefore be numerous 
foldings within 5% to 10% of the computed 
minimum free energy. 

Uncertainties and difficulties of these kinds 
can be mitigated by incorporation of additional 
data. For instance (Zuker, 1989b), incorporating 
nuclease data which identify single or double 
stranded regions results in a dot plot with com- 
patible base pairs only. Further  information is 
gained by determination of a common RNA sec- 
ondary structure within a set of homologous 
RNAs (Jaeger et al., 1989; Le and Zuker, 1991) 
and analysis of time intervals in structural 
reconstructions (because both the building of an 
mRNA molecule and its passage into the 
cytoplasm of eukaryotic cells start from its 5'  
end; Gultyaev, 1991). All of these procedures 
are not sufficient to yield the correct, bio-active 
structure occurring for any given RNA; the 
main problem is thus not yet resolved. Some in- 
teractions between unpaired bases of a folded 
RNA and between RNA or other regulatory 
molecules in a living cell complicate the achieve- 
ment of meaningful conclusions still further 
(Garrett et al., 1981; Goringer and Wagner, 
1988). 

2. Maximum independent set (MIS) programs 

2.1. The algori thm 
An independent set in a graph is a set of ver- 

tices, no two of which are adjacent. A maximum 
independent set (MIS) is an independent set 
whose cardinality is the largest among all 
independent sets. The problem of finding an 
MIS for arbitrary graphs is non-deterministic 
polynomial-complete. The MIS problem, the 
max cut problem and the maximum clique prob- 

lem are all interrelated with each other for 
finding ground states of spin glasses with ex- 
terior magnetic fields and solving circuit layout 
design problems in VLSI circuits and printed 
circuit boards. 

Our parallel algorithm (Takefuji et al., 1990b) 
generates a near-MIS of a circle graph in nearly 
constant time. For an n-edge problem, the 
algorithm uses n processing elements, each im- 
plementing the McCulloch-Pitts (1943) neuron 
model. 

Consider the simple circle graph (Fig. la) with 
14 vertices and 7 edges. Figure lb shows its ad- 
jacency graph, generated by edge-intersection 
in the circle graph. For example, the edge 'd' in- 
tersects with three edges: c, e and f. The ad- 
jacency graph G(V, E)  of the circle graph is 
given by V = { a, b, c, d, e, f, g } and E = [ (a b), 
(b c), (b e), (bfi, (c d), (d e), (df i ,  (eft ,  (fg)}. A set 
of vertices { a, c, e, g } in Fig. lc is the MIS of this 
circle graph which is equivalent to the maximal 
planar subgraph, as shown in Fig. ld. In other 
words, finding the MIS in a circle graph is 
equivalent to finding its maximum planar 
subgraph. In order to find the near-maximal 
planar subgraph in the circle graph with m- 
vertex and n-edge, n neurons (processing 
elements) are used in our algorithm. The output 
state of the ith neuron V~ -- 1 means that  the 
ith edge is not embedded in the circle graph. The 
state of V~ = 0 indicates that  the ith edge is 
embedded in the circle graph. 

The motion equation of the ith neuron for 
i = 1 .... ,n is given by: 

n 

dU~ _ A j ffi ~ --  - (1 - V~) 

dt distance (i) 

- B h  ~-1 dij(1 - Vj) V~ 
j -  

(1) 

where d~ = 1 if the xth edge and the yth 
edge intersect each other in the circle graph, 0 
otherwise. Note that  A and B are constant 
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Fig. 1. (a) Circle graph with 14 vertices and 7 edges. 
(b) Adjacency graph of Fig. la. 
(c) Maximum independent set of Fig. la. 
(d) Maximum planar subgraph of Fig. la. 

coefficients. Edge-intersection conditions be- 
tween the ith and the j th  edges in the circle 
graph are given by: head (i) < head 0) < tail (i) 
< tail (3)and head (3) < head (i) < tail (3) < tail 
(i) where tail (i) and head (i) are two end vertices 
of the ith edge. Note that  distance (i) is given by 
distance (i) -- min(I h e a d ( i )  - tail (i)] ,] n + head 
(i) - tail (i)l) where tail (i) > head (i) is always 
satisfied. 

The function h(x) is 1 if x = 0, 0 otherwise. 
The first term is the inhibitory force in order 

to remove the edges which intersect with the ith 
edge in the circle graph. If  the i th edge is remov- 
ed from the circle graph, the first term will not 
be activated at all, because the state of the ith 
neuron Vi = 1. In order to keep the ith edge in 
the circle graph, the first term should not have 
any edge-intersection violation. Whenever  the 
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ith edge has any edge-intersection violation, it 
will tend to be eventually removed from the cir- 
cle graph. The last term is the encouragement 
force to embed the ith edge in the circle graph. 
If the ith edge is removed but does not intersect 
with any other edges, the last term will force the 
ith neuron to be V~ = 0. In other words, the ith 
edge is encouraged to exist in the circle graph. 

Our goal is to maximize the number of edges 
in the planar circle graph where an edge 
represents a possible base-pair (G-C or A-U). 
The goal of maximizing the number of base pairs 
for predicting the secondary structure in RNA 
viroids was supported by Diener (1987). 

The motion equation of Eqn. 1 is slightly 
modified for predicting secondary structures of 
RNAs: (a) edge-intersection violation conditions 
must be updated. Six conditions to describe the 
edge-intersection in the circle graph are 
required: 

head (i) < head (3) < tail (i) < tail (3), head (3) 
< head (i) < tail (3) < tail (i), tail (i) = tail (3), 
tail (i) - head (3), head (i) = head (3) and head 
(i) = tail (3). 

The last four violation conditions are newly 
added to the first two, because a single base can- 
not be involved in more than one base-pair. The 
other modification is in the distance (i) function 
of Eqn. 1, where it is given by distance 
(i) = 1head (i) - tail (i)l. 

A sequence of m bases is given to the 
simulator. It generates the circle graph with m 
vertices and n edges where n is the number of 
possible base pairs. Each base-pair must also 
satisfy the hairpin-loop constraint, I head 
(i) - tail (i)l > 3, because it is sterically impossi- 
ble to organize the hairpin loop with less than 
three bases. The circle graph is fed to the neural 
network simulator in order to find tile near-MIS. 

2.2. An example 
The stability number for a given RNA second- 

ary structure is the sum of the contributions of 
the loops, bulges and helices. The structure with 
the highest number is the most stable, called op- 

timal folding. A sequence of 38 bases from 
residues 1118-1155 of Escherichia coli 16S 
rRNA served as an example to validate our 
simulator. Figure 2a shows the secondary struc- 
ture proposed by Stern (Stern et al., 1988), 
where the structure stability (+ 7) is computed 
based on Tinoco's values: 

(I). A-U pair, + 1; 
(II). G-C pair, +2; 
(III). G-U pair, 0; 
(IV). hairpin loops, -5 to -7; 
(V). interior loops, -4 to -7; 
(VI). bulges, -2 to -6. 

Figure 2b shows the circle graph with 38 ver- 
tices and 151 edges, each edge represents a 
possible base-pairing. 

When A = B =  1 and U~(0)= - 5  for 
i = 1,...151, the state of the system converged 
to the solution containing 14 edges (Fig. 2c) in 
the 104th iteration step. The secondary struc- 
ture of the simulation result is given in Fig. 2d. 
Its stability number is + 11, demonstrating that 
the simulator can find more stable structure 
than found by other means (Stern et al., 1988). 

3. Planarization and RNA structure 
prediction 

3.1. The algorithm 
The mathematical problem to compute an 

optimal folding based on free-energy minimiza- 
tion is mapped onto a graph planarization prob- 
lem (Takefuji et al., 1990b). We want to 
maximize the number of edges in a plane with n o  
two edges crossing each other. The A-U or G-C 
base pairs are only considered as possible edges 
to be embedded in a plane while the bases are 
the vertices. In other words, for a fragment 
stretching from ribonucleotides i to j, it is 
denoted by the subscript ijth neuron where the 
output and the input is depicted by V~j and Uij  , 
respectively for i = 1 .... , n -  1 and j = i + 1,...,n. 

Consider a sequence of fifteen bases (Fig. 3a). 
In our algorithm a single-row representation is 
used where five edges are embedded. A 
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Fig. 2. (a) Secondary structure of a sequence of 38 bases, proposed by Stern (Stern et al., 1988). 
(b) Circle graph with 38 vertices and 151 edges. 

{c) State of the system after 104 iterations. 

(d) Secondary structure predicted by our algorithm (Takefuji et al., 1990b). 



(15 x 14)/2 neural network array (Fig. 3b) is 
used to predict the secondary structure of this 
problem. The following five functions are con- 
sidered (Eqn. 2): b(i~), g(ij, k), ](ij), p( i j ,  t) and 
h(x). The function b(ij) denotes the possible pair- 
ing: b(ij) = 1 if i and j are one of the four 
legitimate base pairs (G-C, C-G, A-U, or U-A), 0 
otherwise. Cross bonding is sterically impossible 
so that the graph must be planar without two 
edges crossing each other. A violation function 
g(ij, k) = 1 if i < j < k, 0 otherwise has been 
described (Take fuji and Lee, 1989). The function 
](k,l) indicates the strength of a base pair bond 
between k and l bases:j~k,l) = 2 if k and l bases 
are a G-C pair, I if they are an A-U pair, 0 other- 
wise (Tinoco et al., 1971). The hairpin loop con- 
straint is also considered in our algorithm where 
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more than two bases are required to make a 
hairpin loop: the function p(i j ,  t )=  1 if (/'- 
hairpin) < i, 0 otherwise where hairpin is given 
by hairpin = 4 if t = 0, 55-t if 554 > 4, 4 other- 
wise. The hill-climbing function is h(x), 1 if 
x = 0, 0 otherwise. 

To predict suboptimal foldings of a sequence 
of n bases, n(n - 1)/2 neurons are required. The 
motion equation of the ijth neuron is given by: 

dt " k ~  i 

a 
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Fig. 3. (a) Single-row representation of 15 bases. 
(b) Neural representation of a sequence of 15 bases (Fig. 3a). 
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- B i  

k < i < l < j  

- B 2  

i < k < j < l  

- C p ( i , j ,  t )  

Vktg(k,i,l)g(i,lj}f(k,1) 

Vkzg(i,kj)g(kj, IX(k,l) 

+ D h ( ~ V i k )  (2) 

The first two terms force the ith and jth bases, 
respectively, to have one and only one bond. 
Note that if the ith base has strong violations 
caused by other bases, it cannot have any bond. 
The third and fourth terms are inhibitory and 
always satisfy planarization conditions. The 
fifth term is the inhibitory hairpin constraint 
which prohibits less than three bases to make a 
hairpin loop. The hill-climbing force term (h(x)) 
allows the state of the system to escape from the 
local minimum. 

3.2. An example 
Consider a sequence of 55 bases from R17 

viral RNA (Tinoco et al., 1971). 1485 (= 
55 × 54/2) neurons are used to solve this prob- 
lem. Figure 4a and b, shows the state of the 
system after the 1st and the 61st iterations, 
respectively. The latter is translated to the 
predicted secondary structure in Fig. 4c. The 
total stability of the structure is + 7, which is 
equivalent to free energy AG = -8.4 kcal per 
mol. When pairs (A 1~ to U41), (A 1~ to U 4°) and 
(A 17 to U 39) are shifted to (A 15 to U4°), (A 16 to 
U 39) and (A 17 to U3S), respectively, the total 
stability of the structure becomes + 8, which is 
the optimum (Tinoco et al., 1971). 

4. Real life analyses 

4.1. Experimental (Wet) procedures 
There exist several physico-chemical experi- 

mental procedures (e.g., Noller, 1984) to derive 
an RNA secondary structure, or to choose 
among alternative possibilities obtained by the 
conventional computer methods (Section 1.1). X- 
ray diffraction analysis (Holbrook et al., 1978), 

electron-microscopy (Jacobson et al., 1985) and 
absorption spectrum analysis (Reid, 1981), are 
some examples of direct methods, each with its 
own disadvantages. In all the indirect methods, 
the RNA molecule to be studied must be exposed 
to some chemical or enzymatic treatment and 
the nature and composition of products are ana- 
lysed. These include: use of psoralens to cross- 
link the two DNA strands (e.g., Cimio et al., 
1985), binding of synthetic oligonucleotides 
(e.g., Mankin et al., 1981) and the use of specific 
chemicals or specific ribonucleases (e.g., 
Ehresmann et al., 1987). 

The only way to tell which of the candidate 
structures really exists is by probing it chemical- 
ly. Strong evidence supporting the existence of 
a particular structure is usually obtained by 
analyzing products generated by ribonucleases 
with known structure-specific activities (Knapp, 
1989). The molecule under scrutiny is labelled at 
either its 5' or 3' terminal nucleotide with 32p 
and then submitted to partial digestion by each 
of a battery of specific RNases (for the minimum 
number of enzymes, see Zaritsky and Forester, 
1991), under conditions which are assumed not 
to interfere with the native RNA conformation. 
Lengths of the labelled fragments thus 
generated are determined by gel electrophoresis 
and autoradiography, with a ladder containing 
all alkaline hydrolysis products of the RNA as 
size markers. These lengths identify the posi- 
tions of enzymatic cleavages and hence the local 
secondary structure (Pieler et al., 1986; Gerhart 
et al., 1986; Ehresmann et al., 1987). (If the ac- 
tual sequence of the given RNA molecule is 
unknown, the same procedure can be exploited 
to determine it, but with base-specific single- 
stranded RNases operating in denaturing con- 
ditions.) 

Deciphering the results of such experiments 
are however tedious and not always fruitful. 
Algorithms that would allow computers do this 
job are desirable but unavailable. Here, we at- 
tempt to present one (Section 3), which is based 
on the third, neural network approach (1.1) 

4.2. The 'reverse' (simulation) approach 
A parameterizable simulation program (GEL) 
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Fig. 4. (a) State of the system after the first iteration step. 
(b) State of the system after the 61st iteration step. 

(c) Secondary structure predicted by our algorithm. 

has recently been developed (Zaritsky and 
Forester, 1991), to aid in the analysis of the par- 
tial RNase digestion data by displaying ideal 
autoradiograms. The 5'-terminal 75 bases of 
murine J-chain mRNA with a high potential for 

forming secondary structures with presumed 
biological activities (Zaritsky et al., 1988; Ben- 
Alon, 1989), served as an example to 
demonstrate the applicability of GEL. The pro- 
gram simulates the pattern of migration on an 
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electrophoretic gel of a set of denatured RNA 
fragments obtained by partial cleavage of the 
native structure by each of the selected en- 
zymes. However, GEL can only predict experi- 
mental results if some structure is assumed, a 
structure that is obtained by modelling as 
discussed above (Section 1). If one of GELs 
predictions is discordant with the corresponding 
experimental results (e.g., Knapp, 1989), the 
tested structure should be abandoned and 
another one may be introduced and tested; the 
procedure can be repeated until a particular 
predicted structure is confirmed. 

GEL has two major disadvantages: (a) it can 
only confirm the existence of such a structure, 
not predict one itself; (b) the procedure to con- 
firm one particular folding may be exceedingly 
time-consuming, because it depends on much 
luck in the order of choosing among the many 
possible alternative structures, predicted by 
theoretical considerations. 

4.3. The direct, 'forward' approach 
Instead of using the computer as a simulator 

for the autoradiogram from a hypothetical 
structure (Section 5) obtained by other pro- 
cedures (1) as does GEL (Zaritsky and Forester, 
1991), one can better exploit computer's poten- 
tial in a more sophisticated way by having it 
analyze the data obtained from scanning an 
experimental autoradiogram and deduce the ex- 
tant structure, rather than predict the 
autoradiogram. 

4.3.1. Scanning procedures 
Processing of the autoradiogram is done in 

two phases. In the first, the autoradiogram is 
scanned and each lane is compared against the 
ladder lane. This results within a set of points, 
each with its single strand characteristics (and 
double strand, in native conditions only). This 
phase uses standard line-detection techniques to 
identify the RNA fragments and filter out noise 
lines (Rosenfeld and Kak, 1982). Similar techni- 
ques are used for DNA autoradiograms (Gray et 
al., 1984; Russell et al., 1984; Elder et al., 1986; 
West, 1988). The identification can be done by 

either processing each of the lanes separately or 
by analyzing them as one lane. The above pro- 
cess is repeated for several specific RNases so 
that as much information as possible is 
gathered. This results in a set of points along 
with the following attributes: (a) its distance 
from the beginning of the sequence (the base's 
number); (b) the enzyme which 'discovered' the 
point and its 'coupling' characteristics. 

The final outcome of this stage is represented 
by a base sequence of the relevant RNA 
molecule (first attribute), with the paired bases 
(second attribute) marked specifically (see e.g. 
the M format of Fig. 2 in Zaritsky and Forester, 
1991). 

4.3.2. Deriving the structure 
The aim of this stage is to transform the M for- 

mat to a planar representation of the structure 
(e.g., the H (hairpin) format of Fig. 2 in Zaritsky 
and Forester, 1991; and see here Figs. 2a, d and 
4c). This problem is analogous to the one solved 
for small RNAs by Takefuji et al. (1990b), and 
can therefore be incorporated within a neural 
network structure (Section 1.1) and handled by 
the MIS algorithm (Section 2) or the maximum 
planar subgraph algorithm (Section 3). The pro- 
cedure of marking bases reduces the number of 
pairings and thus the number of bases involved 
in the structure, hence reducing the number of 
required processing elements in both algo- 
rithms. Consequently, it decreases the computa- 
tion time. Information on the marked bases also 
provides an accurate prediction of the structure 
by reducing the number of valid alternatives: 
the chance to obtain the global optimum solution 
among many local minima is enhanced due to the 
smaller number of possible base pairings. 

Ideally and as a first approximation, all the 
marked bases in the molecule under study are 
paired and the only paired bases are those 
marked; in other words, there is a unique corres- 
pondence between a mark and a pairing. (As a 
corollary, there should be an even number of 
marked bases in the resultant M format. Cases 
in which this condition is not fulfilled will be 
discussed briefly below in Section 5.) 



5. Additional problems 

One can expect several kinds of problems in 
this approach, because the experimental pro- 
cedures are subject to various diversions from 
the ideal picture drawn (Section 1). The follow- 
ing are examples for which solutions can (a) or 
cannot (b) be easily incorporated: (a) secondary 
recognition sites for enzyme cleavages; (b) in- 
teractions of certain stretches of the studied 
RNA with any regulatory molecule or structure 
in the living cell (be it DNA, RNA, protein, low 
molecular weight molecules or a combination of 
these). 

5.1. Secondary recognition sites 
This artifact results in weak bands on the 

autoradiogram, which can be treated rigorously, 
as for the following example: RNase T1 usually 
cleaves downstream (at the 3'-end of) any 
unpaired G and does not cleave paired Gs. 
However, lower cleavage efficiencies are occa- 
sionally observed downstream when a paired G 
has a 3' neighboring U which is not paired. The 
resultant weaker band can either be ignored by 
the image analysis procedure (Section 4.3.1), or 
it can be labeled as a second-type mark on the M 
format output (Zaritsky and Forester, 1991; 
Section 4.2) and recognized by a simple addition 
to the algorithm (Sections 2 and 3; unpublished). 

5.2. Regulatory cellular molecules 
Many in vivo regulatory signals involve inter- 

actions between macromolecules, low molecular 
weight molecules or structures. A pertinent ex- 
ample is the temporary binding of a ribosome to 
an mRNA, which is necessary for translation of 
the latter to a protein. The nature of this signal 
is not fully understood yet, and much effort is 
being expended to decipher this interaction, 
which is crucial for any living.cell (e.g., Kozak, 
1986). Any stretch of RNA involved in such 
binding is protected from cleavage(s) by the 
specific RNase(s), thus eliminating the relevant 
band(s) from the autoradiograms, bands which 
usually appear in the in vitro reaction mixtures 
(not commonly containing ribosomes). Such an 
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interaction will be overlooked because these 
bands will show up in the absence of ribosomes. 
The only way to avoid this difficulty is by perfor- 
ming simulated 'real life' experiments (e.g., ad- 
ding ribosomes to the mixture). 
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