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Abstract--A general family of fast and efficient neural network learning modules for binary events is introduced. 
The family subsumes probabilistic as well as functional event associations; subsumes all levels of input~output 
association," yields truly parallel learning processes; provides for optimal parameter estimation,, points toward a 
workable description of optimal model performance," and yields procedures that are simple and fast enough to be 
serious candidates for reflecting both neural functioning and real time machine learning. Examples as well as 
operational details are provided. 
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I N T R O D U C T I O N  

Scope 

Forty years ago the psychologist T. L. Kelley began his 
Fundamentals of  Statistics with the compelling premise 
that, "An isolated fact is an unthinkable phenomenon" 
(Kelley, 1947). More recently the emerging neural net- 
work learning (NNL)  movement  (Grossberg, 1988a; 
Rumelhart  & McClelland, 1986) has drawn credibility 
from the converse premise that all thought is based on 
associations among component  facts. During the years 
following Kelley's book the statistics movement  has re- 
fined a framework for describing and evaluating asso- 
ciations among component  facts or events, which has 
taken centuries to develop. During its shorter history 
the NNL movement  has in turn produced many  neural 
models and modular  learning "machines"  for devel- 
oping and utilizing associations among component  
events. Thus, both the statistics and the N N L  move- 
ments have been based on evaluating associations 
among component  variables. However, the N N L  focus 
has been on primitive learning and performance struc- 
tures, whereas the statistical focus has been on efficient 
estimation (learning) and decision making (perfor- 
mance) procedures. 

This is an abridged version of a detailed report, which is available 
from the authors upon request. 

Requests for reprints should be sent to Robert J. Jannarone, De- 
partment of Electrical and Computer Engineering, University of South 
Carolina, Columbia, SC 29208. 

Curiously, in developing its learning models the NNL 
movement has so far made little use of  the associative 
framework that statistics has already developed (see 
Amari, 1988 and Anderson & Abrahams, 1987 for no- 
table exceptions). This has perhaps been due to either 
a scarcity of active researchers in both fields, or a lack 
until recently of some adequate statistical procedures 
for NNL applications, or both. In either case the present 
seems like a good time for NNL modelers to make 
more use of existing statistical concepts. As one attempt 
to supply the NNL movement with a broader inferential 
footing, this report provides a statistical inference so- 
lution to an unsolved NNL problem: how to construct 
a family of machines that can quickly and efficiently: 
(a) learn from experience how any "input" set of  binary 
(true or false) events is related to any other "output"  
binary event set; and (b)  use the associations learned 
in (a) to choose the best possible output event set for 
each input set. 

Purpose 

The purpose of this report is to introduce a general 
family of fast and efficient NNL learning modules for 
binary events called "conjunctoids," by employing 
an appropriate framework from probability theory; 
adapting a class of  recently developed conjunctive 
models from psychometric theory; tailoring sound sta- 
tistical estimation and evaluation schemes to fit NNL 
learning needs; and presenting a detailed functional 
description of the required conjunctoid circuitry. 
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OVERVIEW 

Some Learning Task Examples 

All of  the models that we will present are based on 
associations among M binary input variables, x = (x~. 
. . . .  XM), and Nb i na ry  output variables, y = (yt . . . . .  
YN). To fix ideas, we will use two examples throughout 
this section: learning to recognize the parity of an M- 
variate binary vector, and learning to recognize any of  
2 N distinct stimuli from a visual display broken down 
into M binary ( e.g., presence or absence) sectors. 

Basic Concepts: Multinomial Conjunctoids 

Conjunctoids are functional N N L  modules that are 
based on a probability framework, which treats each 
observed (x ,  y) combination as a realization of a mul- 
tivariate (binary)  random variable, 

W = t X .  Y ), (1} 
I X ( M + N )  1×,~ IX?*' 

where N may be either 1 as in the parity example or 
greater than 1 as in the pattern recognition example. 
The probability framework also assumes the existence 
of specific likelihood functions for samples based on 
W. These likelihoods include estimable parameters that 
can be used to both evaluate and utilize (X, Y) asso- 
ciations, hence reflecting machine learning and per- 
forming functions, respectively. When M + N is small 
and reflecting all possible associations among X and Y 
is necessary, it is convenient to assume that W has the 
multinomial likelihood, 

a,, w E ~M+~'. Pr{W = wl a } = Z a,"  
I × ( M + N )  

UE~IM +N 

= 0 elsewhere. (2) 

where ~M+N = { W : Wk = 0, 1 ; k = 1 . . . . .  2 M+N } and 
the parameter  vector a satisfies 0 _< a ,  _< 1 (u G ~8 M+N). 
Multinomial conjunctoid learning occurs during a se- 
ries of  learning trials, when W values are observed and 
a values are estimated. 

A useful consequence of the parametric probability 
framework is that conditional output probabilities for 
given input values can also be described by estimable 
parameters. For the multinomial case these probabilities 
take the form, 

P r { Y = y l X = x ; a }  = y, a~,.,) 
vEB,  ~ 

Multinomial machine performance occurs when an ac- 
tion represented by a specific y value is selected, based 
on a specific input x value along with estimated a values 
from previous learning trials. 

In addition to assuming a parametr ic  likelihood for 
observable (x ,  y) values, it is useful to include in the 
probability framework a Bayes model for likelihood 

parameters. For the multinomial case, imposing a Bayes 
structure entails treating the appropriate ot for each 
multinomial learning application as a realization from 
a second random variable distinct from W. Imposing 
a Bayes structure also involves assuming a reasonable 
"'prior" probability model for a,  m ~ way that will be 
described later. 

Figure I illustrates how a multinomial machine 
learns parity in the case where M 3 and "'almost" 
no Bayes structure is used ( "almost, '~ because defining 
probabilities before the first learning trial requires a 
weak Bayes prior, q.v. ). Initially, the conjunctoid assigns 
a probability of  .5 to both 3: = I and v = 0 for each 
possible x value, in lieu of any experience that would 
point toward the correct y values. This is indicated bv 
the value of .5 for the 16 estimated output probability 
graphs in Figure 1 at learning trial 0. The top graph in 
Figure 1 shows a sequence of 14 hypothetical (x,  v 
learning trial values. The effect of the first trial value. 
f x. y) - (0, 0 ), is shown in the estimated output prob- 
ability graph for x = 0. During the first learning trial 
the estimate o f P r { Y  = I IX = 0} shifts from .5 to 0. 
whereas the estimated Pr I Y = 0IX := 0 } shifts from 
,5 to 1. Other learning trials have similar effects on 
appropriate y probabilities, as Figure f shows. 

To illustrate performance functioning for the mul- 
tinomial learning sequence in Figure 1. the bot tom 
Figure 1 graph plots the likelihood of correctly choosing 
output y values as a function of learning trial number  
(assuming equally likely input x values). Before the 
first learning trial, the machine will choose arbitrarily 
among the two equally likely y values for each possible 
x value, yielding an expected correct guess rate of  .5. 
Between the first and second learning trials the machine 
will correctly guess the y value when x = 0, but it will 
guess randomly when x 4: 0. At that point the correct 
guess probability will be 

( 1 ~ × ( 1 / 8 ) +  {.5}×~7/8~ 9/16. 

and so on for the next 13 trials as indicated in the graph. 
Moving finally to a N N L  circuitry description, Fig- 

ure 2 contains a schematic diagram for a multinomial 
conjunctoid module. The diagram is made up of in- 
terconnections among several functional units, called 
elementary processing units, that include 2 M+u param- 
eter estimators, a parameter  multiplexer, 2 x output 
pattern accumulators, and an output comparator. As 
Figure 2 indicates, multinomial conjunctoid circuitry 
can also be grouped into larger "experience" and "per- 
formance" segments, which function as follows. Dur ing 
each learning cycle the experience segment receives 
prior/ learning data and sends them to the parameter  
estimators, which in turn send current parameter  es- 
timates to the performance segment. At the start of  
each learning cycle a unit of  prior/ learning da ta - -con-  
sisting of a single (x,  y) observation, w, along with a 
positive learning importance weight, L is passed to 
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FIGURE 1. A parity learning illustration. 

each parameter estimator. Next, each parameter esti- 
mator-consisting of an input indicator, an estimate 
updator, and an output registermperforms two func- 
tions: (a) the input indicator sets a flag, u, to 1, i f w  
matches the parameter for its estimator unit, and to 0 
otherwise; and (b) the parameter updator modifies the 
output register by setting 

aoJd + Lu 
kn~w (4) 

I + L  

Before any prior or learning trials occur, & values are 
set to an initial value of .5 for each parameter. Also, 
each parameter estimator performs separately from and 
simultaneously with all others, so that each learning 
cycle is very fast. 

Regarding performance unit functioning, just as the 
experience segment of Figure 2 executes one learning 
cycle for each input (w, L) learning unit, the perfor- 
mance segment executes one behavior cycle for each 
input x value. At the beginning of each behavior cycle, 
the parameter multiplexer uses the input x value 
to admit only the 2 ~ parameter estimates, { ~(x,.), u 
@ ~ }  associated with the input x value, among the 
2 M+N parameter estimates coming from the experience 
segment. Next, each output pattern accumulator selects 
and stores the single estimate coming from the param- 
eter multiplexer that corresponds to its associated y 
value. Finally, the output comparator identifies the sin- 
gle output pattern having the highest estimated param- 
eter value and outputs its y value. Thus, as with the 
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FIGURE 2. A mul t inomia l  con lunc to id .  

experience segment the performance segment functions 
quite simply. Moreover, each behavior cycle is quick 
because the parameter multiplexer performs no com- 
putations, the output pattern accumulators function 
simultaneously, and the output comparator's sole task 
is to locate the address containing the largest value 
among 2 N words of storage. 

The Conjunctoid Family 

The conjunctoids that we will describe next have 
three distinct advantages over the multinomial version. 
First, they require far fewer than the necessary 2 M÷N 
+ 2 N + 2 elementary processing units associated with 
Figure 2. Second, they produce parameter estimates 
that can directly suggest the simplest underlying x, y 
associations. Finally, for many applications nonmul- 
tinomial conjunetoids require far fewer learning trials 
to produce a given level of performance accuracy, be- 
cause they estimate far fewer pararneters. We will begin 
by introducing a representative~so-called third- 
order---conjunctoid and follow with an overview of the 
general family. 

As in the mulfinomial case the probability model 
for third-order machines assumes the existence of a K- 

variate random variable, W, where K = M + N. How- 
ever, in place of multinomial probabilities third-order 
conjunctive probabilities take the form, 

P r { W  = w i g  (ll, ~(2), B(3) } 

×~ '×(i)1×(7/  

K h - i  K 
.Zt 2) 

k = l  ; , ~ I  m = k + l  

K - 2  1(-1 K 
,~ t3)  

+ Z Z Z ~k.,.wkw.,w.I, (5) 
k = i  m = k + t  n = m + l  

where the estimable parameters in O (l ~, fl(2), and B (3 
are real-valued and the positive normalizing function 
v ensures that all probabilities will sam t ° 1. The term 
"third-order" implies that the prol~al~titi~ defined by 
(5) are third-degree polynomials in tlae ob~rvable bi- 
nary events, w~ through wK. Also, since the elements 
of w are binary the prot~i l i t iesin (5) may be consid- 
ered as third-order conjunctive functions, in that they 
depend on third order conjunets among the el¢ments 
ofw.  

As with the muttinomial version, third-order ma- 
chines perform by using conditional probabilities cor- 
responding to (5) rather than using (5) directly, The 
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pertinent conditional probabilities may be expressed 
as, 

Pr{Y = ylX = x; B Ill, O (2), ~3 TM } = 7r(x, B t~, B 12), B ~3)) 

M k -  1 k K 31 

×exp{ Z Z Z xkymy~+ Z ( Z  B~2~)x~ 
k = l  ~ t = ~ l + l  r t = m + l  n=/I , /+l  k - I  

At-I 31 K 
13) . + Z Z ~k,,,,,xkx,,)y,}exp{ ~ fl~'Ik', 

L=I m = k + l  n=M'+  1 

K I Jk K 2 K - I  K 

+ Z Z 13~,~ymY,+ Z Z Z 
m-, I , /+ l  n = M + l  k=.a,l+l m=k+l n = m + l  

(3) 
~*,,,nYkYr,,Yn }, 

(6) 

where 7r is another normalizing function. 
For a random sample of L learning trials satisfying 

( 5 ), it can be shown that the joint likelihood based on 
(5) is monotonically related to, 

K A - 1  I~ K-2 K-I K 
~(11  ( I )  ~ ( 2 )  (2)  , ~ ( 3 )  (3)  

Z Ok Sk "~ ~ Z OkmSkm t Z Z ~ OkmnSkmn* 
k = l  k=l m=k+l k = l  re=k-el n = m + l  

(7) 

where the statistics s~ l), (2) (3) Skin, a n d  Skm,7 are proportions 
of the L trials for which their corresponding first, second 
and third-order conjuncts were 1. 

Bayes structure for the third-order case closely fol- 
lows the multinomial case. Bayes structure can easily 
be imposed on (5) by replacing any statistic based on 
L learning trials in (7),  say sL, with 

I s p r i o r  -~- LSL 
Spo~t~io~ I + L (8) 

I in ( 8 ) is the "prior sample size," sprior is the proportion 
of times that the "prior statistic corresponding to & 
occurred in the prior sample," and Sposterior is the re- 
sulting composite statistic. Conjunctoid functioning for 
the third-order case also parallels the multinomial case. 
Functioning for both cases can be broken down into 
experience and performance segments, with experience 
resulting in learning via parameter estimation and per- 
formance yielding behavior in the form of selecting 
most likely y values given x. 

Third-order conjunctoids estimate parameters by a 
conditional maximum likelihood (CML) method. The 
CML method finds an estimate for each/3 value in (6) 
based on its corresponding sample s value in (5) and 
conditional upon all other concurrent s values in (5). 
The advantage of the CML approach is that estimation 
for each parameter does not involve other parameters 
in the model. Instead, separate CML functions for each 
parameter--depending only on that parameter and its 
corresponding statisticshare used to find each CML 
parameter estimate. Also, each CML function is simple, 
well-behaved, and amenable to an elementary line 
search method (see the Estimation Details section). 
Most importantly, the CML estimation method is con- 
sistent over learning trials and can in principle be im- 
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plemented in only one read-only-memory ( ROM) fetch 
cycle (Yu & Jannarone, 1987). 

Third-order and multinomial conjunctoids are two 
members of the large, general conjunctoid family. Each 
family member may be indexed by a set of subscripts 
defining both its parameters and its statistics. For third- 
order machines the indexing set is, 

~3 = {1,2 . . . . .  K,(I ,  2),(1, 3) . . . . .  ( K -  1, K), 

(1 ,2 ,3 ) , (1 ,2 ,4 )  . . . . .  ( K - 2 ,  K -  I,K)}, (9) 

indicating that all first, second, and third-order param- 
eters and their conjuncts appear in the third-order 
probability model (5). Indexing-sets for all conjunctoid 
family members are restrictions, B,  of the fully param- 
eterized conjunctoid that is indexed by the so-called 
power set, 5 ~, which includes all possible subsets of { 1, 
2 . . . . .  K}. The family may also be described as in- 
cluding all Pth-order conjunctoids, f~v(P = 1 . . . . .  K),  
as well as all of  their special cases that could be obtained 
by fixing some parameters at 0 (or equivalently re- 
moving the parameters and their conjuncts from the 
model ). 

Conjunctoid Hardware Summary 

Figure 3 contains a schematic diagram for a third- 
order module. The diagram shows the same types of 
elementary processing units--as well as the same ex- 
perience and performance segments--that Figure 2 
shows for the multinomial case. Each estimator in Fig- 
ure 3 consists of an input indicator, a statistic updator, 
a bounds comparator, and an estimate updator. Each 
input indicator begins every learning cycle by setting 
an indicator flag, u, to 1 if the learning trial value of 
w "covers" its corresponding parameter. Next, the sta- 
tistic updator modifies its statistic register by setting, 

sola + Lu 
Sne,~ = - -  (10) 

I + L  

where L plays the same weighting role as in the mul- 
tinomial case. After statistic values have been updated 
during a learning cycle, the necessary values for com- 
puting upper and lower bounds are sent from each sta- 
tistic register to all appropriate bounds evaluation reg- 
isters. Finally, after their upper and lower bounds have 
been evaluated the estimate updators fetch new CML 
parameter estimates from appropriate ROM locations 
according to current s, s, and gvalues (see Conditional 
Probabilities below). 

The third-order performance segment indicated in 
Figure 3 is nearly the same as its multinomial coun- 
terpart in Figure 2, although functioning is more de- 
tailed in the third-order case. The role of the Figure 3 
parameter multiplexer is to send appropriate "joint in- 
put-output  parameters" for a given x value to the out- 
put pattern accumulators, in accordance with the con- 
ditional probabilities in (6).  Once each output accu- 
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mulator has received all of its appropriate parameter 
values, it simply sums them up. Finally, the third-order 
output comparator functions precisely as in the mul- 
tinomial case, by finding the largest output pattern ac- 
cumulator value at the end of each behavior cycle. 

Turning next to third-order hardware efficiency, each 
probability estimator in Figure 3 requires storage for 
its statistic value, each of its potential lower and upper 
bound statistics, its parameter estimate value, and its 
ROM. Also, each third-order pattern accumulator re- 
quires storage for each of its parameter estimates and 
for its summing circuitry. Otherwise, the memory re- 
quirements for third-order elementary processing units 
are the same as for their multinomial counterparts. Re- 
gardingexecution time, since all third-order estimators 
function simultaneously the execution time for each 
estimator is the same as the time for an entire learning 
cycle. The third-order statistic updator takes the same 
amount of time as the entire multinomiat learning cy- 
cle. In addition, the third-order estimator must transfer 
its bound statistics, identify their most restrictive values, 

and locate its CML estimate value. All three of these 
additional functions can be performed quite quickly, 
however. All other third-order functions take the same 
time to perform as their multinomial counterparts, with 
the exception of the third-order output accumulator's 
functioning--its parameter summing takes slightly 
more time, In sum: third-order storage requirements 
are much smaller overall--though larger per elementary 
processing unit--than those for muttinomial machines; 
and third-order functioning is slower than multinomial, 
although not much slower. 

Functioning for Pth-order machines, with P = 2, 4, 
5 . . . . .  K, is similar to third-order eonjunctoid func- 
tioning. However, bounds identification becomes quite 
complicated for high-order cases (see-the Conditional 
Probabilities section below). Other c onjunetoid family 
members may be eonstrncted as Pth-order versious by 
excluding selected parameter values. Paramg~r values 
may be effectively excluded by fixing their parameter 
estimates at 0 and removing their connections to other 
parameter estimators. 
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Related Work 

In this section we will briefly review some conjunc- 
toid-related results within the NNL, statistical pattern 
recognition, mathematical statistics, psychometrics, and 
biometrics fields. For excellent reviews see Grossberg 
(1988a; 1987 ) and Rumelhart and McClelland (1986 ). 
From the conjunctoid perspective the key NNL results 
have been (a) a focus on fast and parallel processing 
(Rumelhart & McClelland, 1986), (b) the perceptron 
learning algorithm, and (c) modern attempts, especially 
in the form ofsigma-pi units (Feldman & Ballard, 1982; 
Rumelhart, Hinton, & McClelland, 1986) to overcome 
perceptron limitations. 

Noniterative processing is essential for neural mod- 
eling, because neurons simply function too slowly and 
humans respond too quickly for serial processing to be 
feasible (Crick & Asanuma, 1986; Grossberg, 1982). 
This simple fact not only rules out the entire von Neu- 
mann (traditional serial subroutine) paradigm as a basis 
for much of neural information processing; it also pro- 
vides much of the driving force for the paradigm shift 
that is currently underway toward distributed models 
of cognition (Grossberg, 1982; McClelland, Rumelhart, 
& Hinton, 1986). 

Perceptrons (Feldman, 1982; Minsky & Papert, 
1969; Rumelhart & Zipster, 1986) were the first serious 
models for fast, parallel processing. They included 
many features that appear in current NNL models, 
including an error-correction approach rather than a 
traditional statistical approach to machine learning. 
This early NNL emphasis on error correction is not 
surprising, because a statistical approach based on the 
standard parameter estimation methods at that time 
would have required prohibitively slow iterations at 
each learning trial. Also, perceptrons were analogous 
to second-order conjunctoids in that they would learn 
only if the relationship between input and output vari- 
ables was linear. 

Sigma-pi units (Amari, 1977; Feldman, 1981; Feld- 
man & Ballard, 1982; Grossberg, 1969; Grossberg, 
1987b; Kohonen, 1977; Rumelhart, Hinton, & Mc- 
Clelland, 1986), can reflect all forms of conjunctive 
logic. Like perceptrons, sigma-pi units use error-cor- 
rection as a means for learning. However, sigma-pi 
learning schemes are necessarily more complicated than 
the perceptron learning algorithm, requiring a process 
called "back propagation" (Rumelhart, Hinton, & 
Williams, 1986). Back propagation involves adjusting 
learning weights associated with so-called "hidden 
units," and leads to some additional sigma-pi unit 
problems (Rumelhart, Hinton, & Williams, 1986). 
These include: no provisions for representing the op- 
timal configuration of hidden units associated with a 
given learning task; a potentially long, iterative process 
of weight adjustment and y estimation that must pro- 

331 

ceed until estimated and actual y values coincide (Ono 
& Fushikida, 1987; Sejnowski & Rosenberg, 1987); no 
guarantee that suboptimal solutions (local optima) will 
not result during parameter estimation; no guarantee 
that sigma-pi back propagation units are sufficiently 
general to reflect all learning situations; and no pro- 
visions for gradual learning over a series of trials. 

Conjunctoids are potentially more powerful than 
sigma-pi units utilizing back propagation, because they 
do not require iterative updating and they use sound 
statistical procedures rather than error correction as a 
basis for learning. Conjunctoids have a further advan- 
tage over sigma-pi units that is quite important. Unlike 
perceptrons, sigma-pi units carry no guarantee of con- 
vergence to proper learning states as the number of 
learning trials increases. Indeed, much attention is cur- 
rently being given to this limitation and ways of re- 
solving it. By sharp contrast, the statistical theory of 
exponential families guarantees that conjunctoid esti- 
mation procedures are consistent. Finally, as indicated 
in the preceding parity example, conjunctoids include 
a natural mechanism for retaining and incorporating 
prior learned information. A similar mechanism has 
not yet been presented for sigma-pi units. 

Conjunctoids include many other underlying con- 
cepts that are similar to existing ideas in the NNL lit- 
erature. These include potential provisions for "un- 
learning" (Hinton & Sejnowski, 1986; Hopfield, Fein- 
stein, & Palmer, 1983 ) by simply by making L negative; 
existing back propagation provisions for prior weighting 
(learning rates) that are quite similar to (4) and (8) 
(Rumelhart, Hinton, & Williams, 1986); existing NNL 
models that are similar to multinomial conjunctoids 
(e.g., the so-called probabilistic conjunctive encoders-- 
Hinton, McClelland, & Rumelhart, 1986--see also 
Anderson & Abrahams, 1987; 1986); models called 
Boltzman machines (Hinton & Sejnowski, 1986) that 
have some probabilistic features like conjunctoids but 
severe difficulties associated with back propagation; and 
many other similarities--too many to list here. 

Turning next to statistical pattern recognition, con- 
junctoids are natural pattern recognizers as one of the 
examples for this report illustrates. In that regard they 
closely resemble the wide variety of statistical pattern 
recognizers that have been studied (Devijver & Kittler, 
1982). Existing pattern recognition jargon includes 
terms to describe many of the concepts that have been 
introduced here, including "features" (independent 
variables), "training/design," "contextual informa- 
tion" (e.g., using Markov models to focus on spatial 
proximity), and "nearest neighbor decision rules" (e.g., 
choosing the most probable y value given x). Indeed, 
statistical pattern recognition is more similar to con- 
junctoid theory than any alternatives that have been 
discussed up until now. Some key differences exist for 
statistical pattern recognition models as well, however. 
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Most notably, statistical pattern recognition has not yet 
produced models with the generality, speed, and com- 
puting compatibility of conjunctoids. (Some special 
cases seem quite close, however--see Marroquin, Mit- 
ter, & Poggio, 1987; Pickard, 1987.) Finally, conjunc- 
toids have the potential for reflecting much more than 
pattern learning abilities. Their potential includes 
modeling the learning of associations among any binary 
variables, including logical variables that could reflect 
a variety of  expertise, knowledge, and attitudes, as well 
as resulting choices and other behaviors. 

Regarding related work from psychometrics, the 
statistical theory of mental tests (Lord & Novick, 1968) 
is fundamentally similar to NNL theory, in that both 
have been primarily concerned with associations among 
binary events. In the psychometric setting the binary 
events correspond to pass versus fail scores on test items, 
whereas in the NNL setting the binary events corre- 
spond to dependent and independent logical variable 
values. Psychometric test theory has differed, however. 
in that it has traditionally attempted to explain all bi- 
nary event associations in terms of only one causal 
(ability) variable. On the other hand, the recent intro- 
duction of conjunctive item response theory (Janna- 
rone, 1986; 1988; Jannarone, Laughlin, & Yu, 1988 } 
has provided psychometrics with a much broader class 
of models and methods for reflecting binary event as- 
sociations. It is from this class of models and methods 
that conjunctoids have been conceived. 

Turning finally to related developments in mathe- 
matical statistics, the power of statistical theory lies in 
its formalization of decision making processes based 
on uncertain information. Modern advances include 
the Neyman-Pearson estimation and hypothesis testing 
theory (Neyman, 1967: Lehmann. 1983. 1986), 
Bayesian theory (Box & Tiao. 1973: Savage, 1954), 
and a general decision framework that includes Ney- 
man-Pearson models, Bayes models, and other concepts 
as well (Ferguson, 1967; Wald, 1950). In its most gen- 
eral form, statistical decision theory assigns costs ~ or 
utilities) to different decisions based on observed ran- 
dom variable values. For each possible data value, loss 
(or utility) functions are formulated that specify the 
cost associated with each resulting decision about 
"states of nature," given the true "states of nature.'" 

Loss functions are typically formulated in reasonable 
ways, so that if a decision accurately reflects nature's 
true state then its loss value will be zero; otherwise 
positive loss values are assigned that reflect how severe 
the discrepancies are between decisions about nature 
and nature's actual states. For example, in pattern rec- 
ognition cases nature's true states take the form of ac- 
tual stimuli (dependent variables) that are presented: 
data take the form of  independent variable values that 
are generated by actual stimulus parameters (the data 
can be random in that the stimuli can be presented 
randomly and the same stimuli can lead to different 

perceptions / independent variable values): and simple 
loss functions can be formulated such that if the learn- 
ing machine guesses the correct stimulus then the loss 
value will be 0--otherwise the loss value will be 1. 

At its best, statistical decision theory points toward 
optimal decision strategies in the face of uncertainty. 
Because of  the uncertainty aspect, however, criteria for 
optimality must be described in probabilistic terms. 
For example, most reasonable pattern recognition 
models are formulated such that two distinct stimuli 
can sometimes produce the same perceptions. In this 
case, no matter what kind of decision rule is formulated 
it is possible that the rule will sometimes yield incorrect 
decisions, That is. no decision procedure can be pro- 
vided that will be absolutely perfect. Instead. the only 
reasonable optimality criteria in such cases must in- 
clude probabilistic notions such as minimizing expected 
loss, maximizing expected utility, and so on. 

A further notion from statistical decision theory that 
pertains to conjunctoids is the concept of asymptotic 
optimality. For the conjunctoid case the major asymp- 
totic optimality consideration is whether a given con- 
junctoid and underlying estimation procedure will have 
optimal expected loss as the number of learning trials 
increases. As it happens, this type of optimality is guar- 
anteed by the consistency of CML estimates (Yu & 
Jannarone. 1987), (However. conjunctoids based on 
alternative procedures such as unconditional maximum 
likelihood estimation may be more asymptotically el: 
j~cient--see Lehmann. 1983.) 

In sum, statistical decision theory has much to offer 
theories of machine learning, because it provides a 
straightforward framework for representing optimal 
decisions under uncertainty and for subsequently iden- 
tifying optimal procedures. However. several criteria 
for optimali ty--both finite and asymptoticmwill need 
to be considered in order to do the. machine learning 
problem justice. 

Other related results from mathematical statistics 
include specific statistical (decision making) procedures 
that are currently available and re~ted to conjunctoid 
procedures. These include linear discriminant analysis 
for continuous variables ( Anderson, 1984), linear and 
nonlinear discriminant analysis for discrete variables 
(Goldstein & Dillon, 1978; Lachenbruch, 1975), linear 
and nonlinear regression (Draper & Smith. 1966), 
CML estimation (Andersen. t980: Barndorff-Nielsen, 
1978 ), and conjugate Bayes estimation (Bickel & Dok- 
sum. 1977: Novick & Jackson. 1974). The results in 
this report offer no new formulations relative to  these 
existing statistical results, except the two new results 
that have already been cited (Jannarone. Laughlin, & 
Yu, 1988; Yu & Jannarone, t987). Instead, our em- 
phasis here has been on selecting the combination of 
existing results from statistics and psychometrics that 
have resulted in general as well as fast conjunctoids. 
Finally, Anderson and Abrahams (1987. 1986) have 
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in t roduced a general probability framework for NNL,  
along with an outline for nonparametr ic  estimation. 
Conjunctoids may be viewed as a family o f  special cases, 
each having a viable parameter, sufficient statistic, es- 
t imation, and real-time hardware implementat ion 
structure. 

P R O B A B I L I T Y  D E T A I L S  

Jo in t  Probabi l i t i e s  for B inary  Events  

We will begin this section by formulating a general 
class o f  conjunctive probability models, after which we 
will focus on some special cases. First, consider a K- 
variate random variable, W,  satisfying 

Pr~{  W = wl#} 

=u~(#)exp{ Z ~k ...... k. Wk," " "Wk.), W @  ~ x, 
(ki,...,ks)6~ 

= 0 elsewhere, (11) 

where 

c y = {(k~ . . . . .  k~), k.. = 1 . . . . .  K, m = 1 . . . . .  s. 

l _ < k l < / ( 2 <  - ' '  < k ~ , s =  1 . . . . .  K } ,  

# = {#~,...~,,(k, . . . . .  k A e ~ } ,  

58 ̂ =  { w : wk =O.  l , k  = 1 . . . . .  K } ,  
I×A 

and 

v~(#) = [ Z exp{ Z #k l ' ' ' k ,  Ukl . °  ° U k , ) ]  - I '  
U ~  K ( k l , . , . , k s ~  

It follows that for a sequence o f  L independent ob- 
servations, w~ . . . . .  WL, that are identically distributed 
according to (11), their joint  likelihood is, 

Pr~{  W I  = w, . . . . .  W L  = WLIfl} 
L 

= [u(fl)]%xp{ ~. 13k,...k s Z W i k l "  " " W i k s } "  ( 1 2 )  
( k b . . . , k s ) 6 ~  i=l 

It also follows from exponential family theory (Leh- 
mann,  1983) that the vector o f  observed conjunct  pro- 
portions, 

)) s~(w~ . . . . .  WL) = ~ w ~ , .  • .W~k, , 
i=l 

(k. . . . . .  k~) E ~ ,  (13) 

is a sufficient statistic for B, whence the term "con-  
junctive probability models,"  

It will sometimes be useful to label the elements o f  
#, s, and the like sequentially f rom 1 to R ,  the number  
o f  elements in Y~. In such cases a single subscript j will 
be used in place o f  each k ~ . . . k s  subscript, where 
j :_~--~  {1 . . . . .  R}  --~j( l )  < j ( 2 )  < • • • < j ( K ) < j ( 1 ,  

2) < j(1,  3) < • • • < j(1,  2 . . . . .  K).  Thus, the like- 
l ihood (12) can be expressed as, 

Pr~{  S 
I×R 
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R 

s [ O,  L} = [u~(O)l%xp{L Z #~s,}, 
I×R I×R r=l 

s 6 8 t ( ~ ) ,  

= 0 elsewhere, (14~ 

where 

#L(~ )  = { S 
I×R 

= s~(ul  . . . . .  uL), 

u#E.~K, i = 1 . . . . .  L } , L =  1 . . . . .  

The first special cases o f  (11) to consider are the so- 
called Pth-order conjunctive probability models defined 
by, 

= ~P = {! . . . . .  K, (1, 2), (1, 3) . . . . .  ( K -  1, K), 

. . . .  (1 . . . . .  P) . . . . .  ( K - P +  1 . . . . .  K)}, 

and yielding likelihoods of  the form, 

P r ~ P { W ,  = wl . . . . .  WL = wL I#} 

K L 

= [u~p(f)]%xp{ ~ /3k ~ w~k 
k=l i~t 

K-1 K L 

+ Z Z ~k,~. Z W,k,W,~,+ • " 
kl = ] k2=ki+l i=1 

K - P +  I K L 

"~ Z ° ° ° Z # k l . .  , kp  Z W i l *  ° ° W i p } .  ( 1 5 )  
kl = I kp=kp_l + 1 i = I 

When expressed in terms of  sufficient statistics (15) 
becomes, 

O 

Pr~p{ S = s ] 13 ) = hL( s ) [u~p(B) I%xp{L  ~, f l js j} ,  
IXO IxQ IxQ j=t  

s E 8 L ( ~ P ) ,  

where the hL(s) are defined below and 

p=l 

The Kth-order special case of  (15) is equivalent to the 
mult inomial  case, which is simpler to formulate as fol- 
lows. For a parameter  space defined by, 

{ a : 0 < a u < l ,  u E ~  K, ~ a u = l } ,  
I X2 K UE ~K 

we have 

P r ~ { W = w l a }  = a . ,  w E ~ X  

= 0 elsewhere, ( 1 6) 

so that for a random sample o f  size L,  

L 

P r v . { W ,  = w, . . . . .  W L  = w L l a }  = ]-I aw~ 
i=l 

Ls,(wb....wt) 
= H O/u 

u6 ~x 

f. 

= ]-I L~ aj~, (17) 
j=l  
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where s. is the proportion of u-valued patterns among 
Wl through wz,,j is the decimal equivalent of the binary 
value corresponding to u, and F = 2 x .  

Other special cases of  interest include the Markov 
models, the simplest of  which is the first-order one- 
dimensional Markov field defined by, 

.7~= {1 . . . . .  K, (1, 2), (2, 3) . . . . .  ( K -  ILK} .  

C o n j u g a t e  B a y e s  S t r u c t u r e  

Since conjunctive probability models are members  
of  the exponential family, known results (e.g., Bickel 
& Doksum, 1977, Prop. 2.4.1) can be used to form 
workable conjugate conjunctive structures. In partic- 
ular, VY/c_ ~ proper conjugate prior densities can be 
obtained by setting 

g~(#lb, I) ~ [vn(#)]Sexp{ I ~ ~k,...k+bk,.../,+), 
(/'+t+, . . , k s  ) 6 ;  ~¢ 

or equivalently, 
R 

g~( /3 I b , I )  o~ [v~(/~)]'exp{ X ~7,b~}, (iS) 
I X R  I × R  r = l  

provided that 

fl " 
• • • [v~(lJ)l%xP{ Z [ 3 , b ~ } d ~ 3 , .  • "d13s < oc 

r = l  

(19) 

If  (19) is not satisfied then conjugate prior densities 
will be improper  (Bickel & Doksum. 1980). In either 
case, the prior density in ( 18 ) and the likelihood in (14) 
will result in posterior densities of the form, 

hs( 3 I b , I ,  s ,L)  
I × R  I × R  I>~R 

R 

o¢ [~(#)]~+~'exp{ ~ t 3 , ( l b~  + L s D } .  (20) 

A useful consequence of ( 18 ) through (20) is that if l 
and b are chosen such that 

b ~ ,Y~(~) (2t) 

then the posterior expression (20) will be proportional 
to the likelihood (14). It follows that any workable like- 

P r ~ { Y  = yIX = x; ~t'} = 
Pr{(X, Y) = ix,  y)IB) 

P r ( ( X ,  Y )  = ( x ,  v ) [ f l }  
v E  ~ N 

exp { X ¢7.,. . . . .  y . , .  , • y , ,  + 
t n l , .  , . . n t ) E ~ l  y 

lihood maximization estimation method based on ( 14 ) 
could also yield posterior maximizing estimates based 
on (20). All posterior distributions to be considered in 
the sequel will be of  the (20) type with b and t satis- 
fying (21). 

The multinomial version of the posterior expression 
(20) is, 

h ~ ( a l  a , 1 ,  s , L )  oc I ]  <~xj !:'~s':. (22) 
I × F  I × F  ~=I 

(The requirement that I and L be integer-valued 
will be dropped in the sequel--given that the b, and s, 
are proportions, all of  the above results apply Vl,  L 
> 0 without loss of  generality.) 

C o n d i t i o n a l  P r o b a b i l i t i e s  

Two conditional probability model types will be de- 
scribed: models for some of  the Wk probabilities given 
the others, and models for each o f  the s ,  probabilities 
given all others. Beginning with the first type, for 

W = ( X ,  v ), 
l>:& I × M  I ~ N  

( l 1 ) may also be expressed as, 

Pr+{(X, Y) = Ix. y)IB} 

= v~(J)expl z~ ~7,,,.. .,,•x,,~ + - x+,, 
t m , , . . .  ,ms  )E- ' ,5 '  ~ 

( n  . . . . .  n ) E l i +  

- Z #,,+,. ....... . .... +>,,,,, •. -x,,,+y,,, • • - v,.,, }. 
{ r o t , ,  , , m s > h i , , , .  , t l t  )E  ~7 ~+ 

= 0 elsewhere. (23) 

where 

and 

/(m~ . . . . .  m+) E ~. m, . . . . .  m+ _ M}, 

~ ( n l  . . . .  n t j ~ f l . M +  t <-:nl . . . . .  n + ~ N !  

Thus. 

£tmi. . . re,n, . . . . .  ,X,,~ " - " xm+yn; " " • y , ,  1 
( m 1,.+. , m s ,  n I,+-. ,tit ) ~  xy 

o:zN e x p  { Z 
( n l , . . . , n t ) ~ R ~  

~ n t .  . • n i l ) h i  " " " Un+ 4-  X 
t r o t , . . ,  ,ms ,# I t , . . . , n t ) l~Rxy  

~ m  I . . . r a ~ n  . • . n t X r a  t " • , X m s l J n l  • . • Un+ } " 

(24) 

For the multinomial case we have, 

P r j t  {Y = ylX = x; a} = 
¢X{x ,y )  

o t  ( x , u )  " 

xlE .~l M. 

= 0 elsewhere. (25) 
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For the conjunctive case it follows that Y is independent o f  X if  and only i f V ( m ~ , . . . ,  ms; n~ . . . . .  n t )  E ~xy, 
~m~ . . . . . .  1 . . . . .  = 0. It also follows that P r ~  { Y I X; B} is o f  the same order in X as the largest t value in (24) .  Finally, 
it follows that the Y~ are mutually independent if and only i f ~ ,  . . . . .  = 0 Vn~ . . . . .  n t  ~ ~ v  - { M  + 1, M + 2, 

. . . .  N } .  
Turning next to conditional likelihoods, Vs ~ g c ( ~ )  and q = 1 . . . . .  R ,  we have, 

Pr{Sq = su[Sl = s I . . . . .  S o _  I = S q _ , , S o +  I = Sq+, . . . . .  S R  = s ic}  

R 

h~.(s)exp{L 2 /3,s~} 
r = l  

Z 
vEg(~]s ,q)  

Z 
v ~ g  ( ~'1 s,q) 

R 

hL(s,  . . . . .  so_,, v, so+l . . . . .  S n ) e x p { L ~ q V  + L Z ~ s ~ }  
r= I  
r4=q 

hL(s)exp { L~os  o } 
hz.(sl . . . . .  so_,, v ,  so+l . . . . .  s n ) e x p {  L~Sov } , so E g { R l s ,  q}, 

= 0 elsewhere, (26) 

where h c ( s )  is the number  o f  ways that s can be observed in samples o f  size L and 

8 ( ~ l s ,  q) : {s~: s ~  g ~ ( ~ ) } .  

Turning next to "conditional posterior likelihoods" based on (20),  we consider conditional probabilities associated 
with each of  the "posterior sufficient statistic" values in 

1 
t = .,-"7-7 ( /b  + Ls) 

l + L  

and conditional upon the others. We have, 

Pr{ To = t~lT,  = t, . . . . .  T~_~ = t o _ l ,  To+ 1 = to+ 1 . . . . .  T R = t R ; ~ o  } 

vE~' ( ~' I t,q ) 

hL(t)exp {(I + L) f lo t  q } 

hz.(h . . . . .  to_,, v, to+l . . . . .  tr)exp{ ( I  + L)~3uv} ' 

q =  1 . . . . .  R ,  t u E g ( ~ [ t , q ) ,  

= 0 elsewhere. (27) 

The impor tant  consequence o f (26  ) and (27) is that 
conditional probabilities for any sufficient statistic given 
the others depend only on the single parameter  asso- 
ciated with that sufficient statistic. 

Finally, expressions for the ~(Y~ [ s, q) based on Pth- 
order conjunctive models will be provided without 
proof. For all (k~ . . . .  , kt) ~ ~oP we have, 

• (~P]s,  kl . . . . .  kt) = {Sk,...k,(S) + j / L ,  

j = 0, 1 . . . . .  L(sk,...kt(S) - -  S k i . . . k g ( S ) ) } ,  

where the &~...k, and £k,...k, depend on s as fol- 
lows: the &, . . .k ,  are maxima among terms that in- 
clude 0 when t = P ,  {Sk , . . . k ,+ , :  Sk~.. .kr_lk,+,. . .k,+, 

= Sk,...k,, r = 1 . . . .  , t + I} when t < P ,  and 
{ s k ~ . . . ~  + Sk,  l . . . k ,  - l ,  [ ( k j  . . . . .  k~), (kr+~ . . . . .  k , ) ]  
is a partit ion o f  { k~ . . . . .  kt }, r = 1 . . . . .  t } when P 
> 1; the sk, . . ,  k, are min ima  among terms that include 
1 when P = 1, {1 + Ski...k,,~, . . . . .  -- Sin, . . . . . .  r = 1, 
. . . .  P - t }  w h e n t  = 1 . . . . .  P -  l a n d P =  2 . . . .  , 
k, and {Sk,...k~_,k~+,...k,, r = 1 . . . . .  t} when t = 2, 
. . . .  P and P = 2 . . . . .  K. 

E S T I M A T I O N  

Condit ional  L i k e l i h o o d  M a x i m i z a t i o n  

Because conjunctive models having conditional 
likelihoods given by (26) are in the exponential family, 
it follows (Yu & Jannarone,  1987) that given mild reg- 
ularity conditions (a)  unique max imum likelihood es- 
timates ~u exist for each/30 based on sq and conditional 
upon s~ , • • • ,  su_~ , Sq+ ~ , • • . ,  sR,  except when Sq takes 
on boundary  values (e.g., s u and £q for Pth-order  mod-  
els), (b) the CML log-likelihoods corresponding to (26) 
are concave, and (c) the resulting C M L  estimates are 
consistent. 

For Pth-order  conjunctoids conditional likelihoods 
take the form, 

hL(s)exp { 13~Ls o } 
z_~q . (28) 

hL(sl  . . . . .  so- l ,  V / L ,  sq+l . . . . .  s R ) e x p { f l o L v  } 
v=Lvo 

Details associated with obtaining accurate C M L  es- 
timates based on (28) are beyond this article's scope 
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and will be given elsewhere, although the general con- 
ditions can be outlined at this point. Although (28) 
depends on sample size as well as s values the con- 
junctoid scheme requires that adequate CML estimates 
for any sample size be stored in a ROM. Our approach 
entails treating each learning trial as if the effective 
(prior plus data) sample associated with current s val- 
ues were large and using accurate approximations based 
on (28) accordingly. These approximations utilize the 
consistency of (28); the fact that if3q values maximize 
monotone functions of (28) then they are also CML 
estimates: limiting integral forms of  the denominator 
in (28); and limiting forms of the hi+(S) in (28) based 
on Stirling's approximation. 

C o n d i t i o n a l  P o s t e r i o r  L i k e l i h o o d s  

Just as conditional posterior likelihoods are formally 
equivalent to conditional likelihoods, so are conditional 
posterior MLEs equivalent to conditional MLEs. 
Therefore no further developments are necessary for 
conditional posterior likelihood maximization. Instead. 
in this section we will outline a procedure for generating 
"posterior sufficient statistics" based on prior belief 
along with likelihood data. First, any type of prior belief 
for a given conjunctive model can be expressed in terms 
of B0, a vector of prior values for #. Second, expected 
prior sufficient statistic values corresponding to B0 can 
be obtained by evaluating, 

b = d(Slfl0). (29) 

Finally, posterior sufficient statistics can be formed by 
setting, 

l 
t [Lpno~b -r L~mpl~S], (30) 

Lpnor -f- Lsample 

with Lprio, being chosen to reflect prior belief strength 
relative to Lsample. 

Conditional posterior likelihood maximization can 
be useful in avoiding boundary value problems (Jan- 
narone, Laughlin, & Yu, 1988). It can be shown that 
if b is chosen by setting 

b = d ( S l f l o  = O) 

and if/-~io~ > 0 then no boundary values of t  will occur. 

The Multinomial C a s e  

Conditional likelihood maximization is not neces- 
sary for muttinomial conjunctoids, because multinom- 
ial parameters can be separately estimated through a 
simpler (unconditional) maximum likelihood ap- 
proach. Maximum likelihood estimates of the aj in ( 17 ) 
are merely their corresponding s/proport ions,  which 
pose no boundary problems. 

Posterior Bayes structure is also easier to implement 
for multinomial machines. In the multinomial case 

prior belief as reflected by a0 = a can also be directly 
reflected by prior sufficient statistic values of a .  Also, 
relative priorbelief strengths can be specified by setting 
the prior sample size Lprior at appropriate values relative 
to L,~mpj~, as in the conjunctive case. Posterior maxi- 
mum likelihood estimates can then be obtained by 
simply setting the posterior sufficient statistics to 

Lpriur + Lsample 

SUMMARY 

A general family of learning modules for binary 
events has been introduced that is based on: probabi- 
listic notions including random variables, conditional 
probabilities, and conjugate Bayes structures; psycho- 
metric formulations that feature conjuncts among 
component events as sufficient statistics: conditional 
maximum likelihood and posterior modal estimation 
schemes; and modem computer design features in- 
cluding VLSI ROM technology. The resulting modules 
have been shown to be general--all relationships among 
binary events are special cases as are many different 
kinds of learning schemes; fast--noniterative parameter 
estimation is the key to practically real-time learning 
potential; and realistic--feasible models for a variety 
of machine and neural learning functions are special 
cases. Finally, a variety of necessary steps for future 
development of the learning models has been proposed. 
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