
www.circuitcellar.com CIRCUIT CELLAR® Issue 213 April 2008 35

will be available for programming. The
USB connector has four pins: 5 V, GND,
D–, and D+. The D– and D+ pins are
used on the ATtiny45 for USB communi-
cation with another two pins for XTAL1
and XTAL2 with a 12-MHz resonator.
Note that 1.5 Mbps of USB streaming
data can be decoded by the open-source
AVR-USB package’s USB protocol stack.
The open-source USB protocol stack

gives you a user-friendly API,
where usb_control_msg and
usbFunctionSetup functions are
used for USB communication
between a host PC and an
ATtiny45.

The circuit is built in a
breadboard with a 1.5-kΩ resis-
tor for the 5-V pullup of D– and
two 68-Ω series resistors directly
connected to PD0 and PD2 from
D– and D+, respectively. The
3.3-V CMOS voltage regulator is

In this article, I’ll explain how USB
communication can be implemented
on an Atmel ATtiny45 eight-pin DIP
with open-source software packages
(libusb, Cygwin, WinAVR, and AVR-
USB). WinAVR compiles the target
firmware program under Windows.
AVR-USB is an open-source USB pro-
tocol stack for firmware, which can be
compiled by a GNU C compiler under
WinAVR. libusb is also an open-source
USB protocol stack for a host PC,
which is used under Cygwin on Win-
dows, to compile a USB application
program.

With the open-source software pack-
ages, the USB 1.1 or USB 2.0 low-
speed function can be easily achieved
without a USB chip. The size of a USB
protocol stack for firmware embedded
in the ATtiny45 is about 2 KB. There-
fore, more than 2 KB is available on
the ATtiny45 for user programming. If
you use an ATtiny85, 6 KB of space

used to feed the ATtiny45. Because six
ATtiny45 pins (5 V, GND, D–, D+,
XTAL1, and XTAL2) are used, two
pins are left for MAX517 two-wire
serial programming. The MAX517 is a
two-wire, 8-bit DAC. The necessary
commands must be supplied from an
ATtiny45 for D/A conversion.

Figure 1 shows the circuit diagram
of the programmable USB power sup-
ply. A female USB connector can be
custom-made for a user-friendly bread-
board (see Photo 1). Photo 2 shows the

FEATURE ARTICLE by Yoshiyasu Takefuji

Yoshiyasu describes the step-by-step construction of a simple USB DAC around an
ATtiny45 and a MAX517. You can use the system as a programmable power supply.

Photo 1—This is a hand-made
female USB connector for a
breadboard.

Programmable Power

Photo 2—This is a completed programmable USB
power supply using an ATtiny45 and a MAX517.

Build a Simple USB DAC

Figure 1—This is a circuit diagram of a programmable USB power supply using an Atmel ATtiny45 and a MAX517
8-bit DAC.

2804015_Takefuji.qxp 3/6/2008 3:41 PM Page 35

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2008 Circuit
Cellar Inc. All rights reserved.

36 Issue 213 April 2008 CIRCUIT CELLAR® www.circuitcellar.com

complete circuit.
The system features an ATtiny45, a

MAX517, a breadboard, a 3.3-V voltage
regulator, a 12-MHz ceramic resonator,
and a female USB connector. It also
includes one 1.5-kΩ resistor, two 68-Ω
resistors, and two 4.7-kΩ resistors.

The installed software packages on
Windows include Cygwin (gcc-core,
gcc++, libusb, and other necessary
libraries). Download the setup file and
double-click it to install the necessary
packages (www.cygwin.com/setup.exe).
WinAVR must also be installed. Down-
load the latest WinAVR-xxx-install.exe
file and double-click the downloaded
installation file (http://winavr.source
forge.net/download.html).

To install Cygwin first, double-click
setup.exe in Windows and select the
root install directory (in my case,
c:\cygwin is given). Next, pick direct
connection, choose the nearest site
from the list, and select the necessary
packages for your system. You must at
least install gcc-core, gcc++, and libusb.

USB COMMUNICATIONS
USB 2.0 has three communication

types: 1.5 Mbps (low speed), 12 Mbps
(full speed), and 480 Mbps (high
speed). I established 1.5-Mbps low-
speed communication using an
ATtiny45 with a 12-MHz ceramic res-
onator without a USB chip.

An open-source software protocol
stack can take care of non-return-to-
zero inverted (NRZI) encoding, decod-
ing, and bit stuffing for synchroniza-
tion. The conventional USB chip uses
NRZI encoding/decoding with auto-
mated bit stuffing. In the bit-stuffing
technique, each time a series of five
consecutive “0” bits is transmitted, a
“1” bit is automatically added to
force a transition. In this article,
usb_control_msg and usbFunctionSetup
functions are used for USB communi-
cations. usb_control_msg is used for
host PC USB communications. usb-
FunctionSetup is used for ATtiny45
USB communications.

FIRMWARE
The avrusb protocol stack is embedded

in the firmware of the USB device. It pro-
vides you with user-friendly APIs includ-
ing the usbFunctionSetup function.

The usbFunctionSetup function is used
to send/receive data via USB between
the host PC and the USB device
(ATtiny45). The data mapping is detailed
in Figure 2. Because usbFunctionRead
and usbFunctionWrite are not used in
this article, those functions are

described at www.obdev.at/products/
avrusb/index.html.

In AVR-USB, usbconfig.h plays a key
role in firmware configuration. The
USB configuration port is defined in
Listing 1. usbconfig.h device descrip-
tions are defined in Listing 2.

Listing 1—This is part of a usbconfig.h file for hardware configuration where PortB, PB0 for D–, and PB2 for
D+ are set.

/* usbconfig.h */
#define USB_CFG_IOPORT PORTB
/* This is the port where the USB bus is connected. When you
* configure it to "PORTB", the registers PORTB, PINB (=PORTB+2)
* and DDRB (=PORTB+1) will be used.
*/

#define USB_CFG_DMINUS_BIT 0
/* This is the bit number in USB_CFG_IOPORT where the USB D- line
* is connected. This MUST be bit 0. All other values will result
* in a compile error!
*/

#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line
* is connected. This may be any bit in the port. Please note
* that D+ must also be connected to interrupt pin INT0!
*/

Listing 2—This is part of a usbconfig.h file for hardware configuration where VENDOR_ID,
DEVICE_ID, VENDOR_NAME, and DEVICE_NAME are set and disabling FN_WRITE and
FN_READ.

#define USB_CFG_VENDOR_ID 0x84, 0x13
#define USB_CFG_DEVICE_ID 0x88, 0x88
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
#define USB_CFG_VENDOR_NAME ‘D', 'e', 'v', 'D', 'r', 'v'
#define USB_CFG_VENDOR_NAME_LEN 6
/* These two values define the vendor name returned by the USB
* device. The name must be given as a list of characters under
* single quotes. The characters are interpreted as Unicode
* (UTF-16) entities.If you don't want a vendor name string,
* undefine these macros.
*/

#define USB_CFG_DEVICE_NAME 'U', 'S', 'B', '-', 'K', 'O'
#define USB_CFG_DEVICE_NAME_LEN 6
/* Same as above for the device name. If you don't want a device
* name, undefine the macros.
*/

Disable usbFunctionWrite and usbFunctionRead in this example.
#define USB_CFG_IMPLEMENT_FN_WRITE 0
/* Set this to 1 if you want usbFunctionWrite() to be called for
* control-out transfers. Set it to 0 if you don't need it and
* want to save a couple ofbytes.
*/

#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are gen-
* erated "on the fly" when usbFunctionRead() is called. If you only
* want to send data from a static buffer, set it to 0 and return
* the data from usbFunctionSetup(). This saves a couple of bytes.
*/

#define USB_CFG_DEVICE_CLASS 0xff
#define USB_CFG_DEVICE_SUBCLASS 0
#define USB_CFG_INTERFACE_CLASS 0
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0

2804015_Takefuji.qxp 3/6/2008 3:41 PM Page 36

http://www.cygwin.com/setup.exe
http://winavr.sourceforge.net/download.html
http://winavr.sourceforge.net/download.html
http://www.obdev.at/products/avrusb/index.html
http://www.circuitcellar.com
http://www.obdev.at/products/avrusb/index.html

www.circuitcellar.com CIRCUIT CELLAR® Issue 213 April 2008 37

compiling the described source pro-
gram. PB1 and PB5 (reset) are used for
the MAX517 two-wire programming
setting. Once the RESET pin is set up
by writing the lfuse and hfuse, the
conventional serial programmer can
no longer write the ATtiny45’s flash
memory because the reset function is
disabled. To reactivate the ATtiny45’s
RESET pin for further programming,

Two-byte data from the host is sent
to the target USB device using usb-
FunctionSetup to initialize the
MAX517 (two-wire, 8-bit DAC) and
set the voltage of the D/A output. The
first data byte sets the mode. The sec-
ond data byte sets the voltage of the
D/A output. A pulse stream from the
ATtiny45 is sent to the MAX517 to
program a DAC. WinAVR is used for

high-voltage serial programming must
be used.

To compile the source program,
type “make” in a Cygwin window or
execute “Make All” on the program-
mer’s notepad in WinAVR. After a suc-
cessful make operation, a da.hex file
should be generated. A da.hex file is
used to write the ATtiny45’s flash
memory with the program writer.
Modify WRITER=xxx in a makefile
according to your own program writer.
In a Cygwin window, type “make
fuse” and “make hfuse” to update the
fuse bytes (see Listing 3).

MAX517 (DAC) PROGRAMMING
The MAX517 is an 8-bit DAC

where two-wire programming is need-
ed to set analog OUT0. Three bytes
(slave address byte, command byte,
and output byte) must be sent to the
MAX517 to set the analog output (see
Figure 3).

As you can see in Figure 1,
AD1=AD0=1 makes the slave address
byte 01011110. The command byte
becomes 00000000. The output byte is
given by “data[2]” with a range of 0 to
255 in the usbFunctionSetup function
in the firmware, which is equivalent to
the value of the parameter “i” in the
usb_control_msg function in the host
program.

Analog output can be determined by:
:

In Figure 1, the REF0 pin is con-
nected to 5 V and the DAC resolu-
tion is 0.0195 V. Therefore, the ana-
log output should be between 0 and
4.98 V. Figure 4 is a simplified DAC
diagram.

FIRMWARE, SOFTWARE, & LIBUSB
The makefile is used to generate a

da.hex file, which is written in the
ATtiny45’s flash memory. The make-
file is posted on the Circuit Cellar
FTP site.

LibUsb-Win32 is an open-source
USB protocol stack library for Win-
dows. There are two important func-
tions: usbOpenDevice and usb_con-
trol_msg in this application.
usbOpenDevice opens the USB device
to ensure the target VendorID (VID)

V data
REF0

2
256

[]⎛
⎝⎜

⎞
⎠⎟

Listing 3—This is a full source listing of a USB device firmware program for an ATtiny45 and a MAX517.

/* Programmable USB power supply using TINY45 and MAX517 */
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/wdt.h>
#include "usbdrv.h"

void delay(unsigned int p)
{ unsigned char i, j; //one loop is 3.8us with 12MHz

for(i=0;i<p;i++) for(j=0;j<10;j++); }

void pulse(unsigned char data)
{ if((data & 0x01)==0){PORTB = 0x00; } //SDA=0

else {PORTB = 0x02; } //SDA=1
delay(1); PORTB = PORTB | 0x20; //SCL=1
delay(1); PORTB = PORTB & 0x02; //SCL=0
delay(1); }

void start_strm()
{ PORTB = 0x20; //SDA=0

delay(1); PORTB= 0x00; delay(1); }

void stop_strm()
{ PORTB = 0x20; //SCL=1

delay(1); PORTB = 0x22; //SDA=1
delay(1); }

void ack_strm()
{ PORTB = 0x00; //SDA=0

delay(1); PORTB = 0x20; //SCL=1
delay(1); PORTB = 0x00; //SCL=0
delay(1); }

/*-------------generate pulse stream---------------*/
void pulse_strm(unsigned char sda)
{ unsigned char i,ret;

for(i=0;i<8;i++){ret=(sda>>(7-i)); pulse(ret); } }

uchar usbFunctionSetup(uchar data[3])
{ static uchar replybuf[1];
usbMsgPtr = replybuf;

if(data[1] == 0){
replybuf[0]=55;
start_strm(); pulse_strm(0x5E); //01011110 AD1=AD0=1
ack_strm(); pulse_strm(0x00); //00000000 RST=PD=A0=0
ack_strm(); pulse_strm(data[2]); // data[2] is for voltage
ack_strm(); stop_strm(); }

else if(data[1] == 1){
replybuf[0]=11;}

else if(data[1] == 2) {
replybuf[0]=22;}
return 1; }

int main(void)
{ DDRB = 0x22; // 0010 0010 PB1=SDA and PB5=SCL

// are output
PORTB = 0x22; //SDA=SCL=1
usbInit();
sei();
for(;;){ usbPoll(); }
return 0; }

/************************end of program**************************/

2804015_Takefuji.qxp 3/6/2008 3:41 PM Page 37

http://www.circuitcellar.com

continue. You have now successfully
installed the generated device driver
on your host PC. Two important files,
libusb0.dll and libusb0.sys, have been
installed by the Hardware Update
Wizard.

TESTING
When you can successfully generate

volt.exe and write da.hex files in the
ATtiny45’s flash memory with the
fuse settings, type “volt 2.5” in the
Cygwin window and measure the
voltage at a MAX517’s PIN1 with a
voltmeter.

In this article, I described a simple
programmable USB DAC featuring an
ATtiny45 and a MAX517, which can
be used as a programmable power sup-
ply. Because two-wire serial program-
ming is used to set the D/A data in a
MAX517, multiple channel DACs can
be easily implemented with a
MAX518 or a MAX519. I

and ProductID (PID) are there. VID and
PID are my unique commercial IDs,
but you may use them for your person-
al use. usb_control_msg is a user-friend-
ly function in the libusb protocol stack
package. usb_control_msg sends and
receives the data between a host PC and
the ATtiny45. Two important parame-
ters (mode and i) in usb_control_msg on
the host application are transferred to

two parameters (data and data) via
usbFunctionSetup on firmware. The
parameter mapping between usb_con-
trol_msg on your host PC’s software
and usbFunctionSetup on the
ATtiny45’s firmware is illustrated in
Figure 2.

To generate the application program

called volt.exe, type “gcc volt.c –lusb
–o volt” in a Cygwin window. You may
view the code on the Circuit Cellar
FTP site.

libusb is an open-source project for the
Linux, FreeBSD, NetBSD, OpenBSD,
Darwin, Mac, and Windows operating
systems (Windows 98, Win Me, Win-
dows 2000, and Windows XP). Simple
data transfer in a libusb protocol stack
package can be accomplished using a
usb_control_msg function for small
data transfer. The usb_bulk_write and
usb_bulk_read functions can be used
for transferring large data. Definitions
of the three functions are posted on
the Circuit Cellar FTP site.

HOST DEVICE DRIVER INSTALLATION
When connecting the target USB

device to a host PC for the first time,
the Hardware Update Wizard will ask
you to connect the new device driver.

You must install the new device driver
at your own risk.

First, connect your USB device to
the host PC. The Hardware Update
Wizard will ask you for a new device
driver. Ignore this window for the
moment. Instead, open a Windows
Explorer window and double-click
c:\cygwin\lib\inf-wizard.exe. In its
window, select 0x1384 and click the
Next button. Click the Next button
again and save the file as usb-ko.inf.
Now, go back to the Hardware Update
Wizard window and select “install
from a list or specific location.” Check
the “include this location in the
search” box. Click on the Browse but-
ton and browse to c:\cygwin\lib\libusb.
Finally, click on the OK button to

Figure 3—This is a MAX517 8-bit DAC programming timing chart.

Start condition

R R R

2R 2R 2R 2R 2R

REF_*

GND

D0 D5 D8 D7

OUT_

–

+

Figure 4—This is a simplified DAC diagram of a MAX517.

Host PC

usb_control_msg
USB

ATtiny45

usbFunctionSetup

2-Wire

SCL SDA

MAX517

mode

i

data[1]

data[2]

Figure 2—This is parameter mapping between a host
computer and a USB device using an ATtiny45 and a
MAX517.

Yoshiyasu Takefuji (takefuji@sfc.keio.ac.
jp) holds a PhD in Electrical Engineer-
ing from Keio University in Japan,
where he is a tenured professor. He is
also a tenured faculty member at
Case Western Reserve University in
Cleveland, OH. Yoshiyasu’s design
interests include computer architec-
ture, neural computing, and computer
security.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2008/213.

SOURCES
ATtiny45 Microcontroller
Atmel Corp.
www.atmel.com

AVR-USB
Objective Development Software
www.obdev.at/products/avrusb/
index.html

Cygwin
Red Hat, Inc.
www.cygwin.com/setup.exe

WinAVR
SourceForge
http://winavr.sourceforge.net/
download.html

www.circuitcellar.comCIRCUIT CELLAR®38 Issue 213 April 2008

OUT 1

2

3

4 5

6

7

8

GND

SCL

SDA

REF

VDD

ADO

AD1

Maxim
MAX517

SDA

SCL

Start condition

MSB

Slave
address byte

LSB ACK MSB LSB ACK MSB LSB ACK

Command byte Output byte

Stop condition

2804015_Takefuji.qxp 3/6/2008 3:41 PM Page 38

mailto:takefuji@sfc.keio.ac.jp
mailto:takefuji@sfc.keio.ac.jp
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2008/213
http://www.atmel.com
http://www.obdev.at/products/avrusb/index.html
http://www.cygwin.com/setup.exe
http://winavr.sourceforge.net/download.html
http://www.circuitcellar.com

