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Abstract. A parallel algorithm for finding Ramsey numbers is presented where analog/digital CMOS circuits for
the hysteresis McCulloch-Piits binary neuron are described. The hysteresis McCulloch-Pitts binary neuron model
is used in order to suppress the oscillatory behaviors of neural dynamics so that the convergence time is shortened.
The proposed algorithm using the hysteresis McCulloch-Pitts binary neuron found five Ramsey numbers. The analog
CMOS sigmoid circuit with variable gain controls has been fabricated and tested using the SAC data acquisition
board interfaced with a TMS 32010 processor. Hysteresis can be implemented by the positive feedback in the
Tabricated CMOS analog circuit.

1. Introduction A silicon neural network can be implemented us-
ing analog, digital, or mixed analog/digital circuits. The

Recently the silicon implementation of neural networks advantages of an analog circuit are simple basic blocks

has received considerable attentions from many VLSI and smaller arca. However, the noise immunity is worse

researchers [1], [2]. In this paper analog/digital circuits than digital circuits. On the other hand, the digital cir-

of the hysteresis McCulloch-Pitts neuron are shown. cuits are straightforward for design and their testabil-

Through solving NP-complete problems, we have been ity is better than analog circuits. Also the interface to

investigating the feasibility of silicon neural network. the digital coprocessor is sipler. However, the overall

The neural network is composed for neurons and area of digital circuits is larger.
syncaptic links. In this paper analog/digital circuits of
the hysteresis McCulloch-Pitts neuron are presented 2. Silicon Neuron Models

which is used to solve Ramsey number problems. The

processing element can be modeled using nonlinear 2.1. Sigmoid Neuron Model

transfer function such as a sigmoid-shape transfer func- Many optimization problems have been solved by artifi-
tion, hard-limit binary function, or hysteresis binary cial neural networks [3-5]. Some of them used the dif-
function as shown in figure 1. The processing elements ferentiable and continuous neuron model, sigmoid func-
are interconnected by synaptic links. tion, where the input/output relationship is given by
Y v v
+1 +]  [re— +1 FT
[0 g 0 U LTP [0UTP
a) Sigmoid function b) Hard-limit binary function ¢) Hysteresis hard-limit
binary function

Fig. 1. Nonlinear transfer functions,
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Vi = g(U) = % [anhAU) + 11 (1)

where V; and U; are output and the input of the ith
neuron, and A is the pain factor. If A is infinitely high,
the input-output function will become the three-state
step function:

Vis1if U > 0,24 U, = 0,
2

and O otherwise.

Figure 2 shows the detailed CMOS circuit diagram
of the sigmoid neuron with varizble gains. The sigmoid
circuit is composed of two subcomponents: an unbuf-
fered comparator with a positive feedback loop and
double-cascaded inverters with negative feedback loops
[6]. The comparator is provided by transistors M 1-M6
for the sigmoid function, and the positive and the
negative feedback loops in the inverters are provided
by transistors M7-M 11 for gain controls in the sigmoid
function.

Figure 3 shows the layout of the fabricated sigmoid
neuron circuit using the CMOS technology. It has 10

transistors and 4 resistors which can control the gain
of the sigmoid function. The current size is 200 pym
X 150 pm based on 3-um CMOS technology. To
evaluate the performance of the proposed circuit, we
tested a prototype chip using the SAC data acquisition
board interfaced with a TMS 32010 processor. Figure
4 shows the experiments of 1/O response on the test
chip. The four conditions for » (100, 250, 500, and
1000 where r = Ro/Rg = Rg/R;), are used in the
chip. In order to increase the gain of the sigmoid func-
tion, the gains of the inverters, either R;p/Ry or Rg/R,,
or both, should be increased. As the gains of the in-
verters increase, the I/O sigmoid function curve ap-
proaches a high-gain limit function. As the gains are
lowered, it approaches a gently-sloped sigmoid curve.
In the lowest gains, the output approaches a constant
zero voltage, regardless of inputs. In order to reduce
dc offset, it was necessary to adjust the Vssto —3.6 V.

2.2. The Hysteresis McCulloch-Pitts Neuron Model

The hysteresis property suppresses the oscillatory be-
havior of neural dynamics and consequently it shortens

M6

M10

VSS

Fig. 2. A detsiled CMOS circuit diagram of the sigmoid neuron.
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Fig. 3. The layout of the fabricated sigmoid function chip.
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Fig. 4. The experiment results of 1/0 response on test chip.

the convergence time to the global minimum. The in-
put/output function of the hysteresis McCulloch-Pitts
binary neuron is given by [7]:

Vi =f(U;) =1 if U; = UTP (upper trip point)

0 if U; = LTP (lower trip point)
unchanged if LTP < U; < UTP
@

Figure 5 shows the digital circuit diagram of the
hysteresis McCulloch-Pitts binary neuron [8]. We
designed a synchronous sequential circuit using flip-
flop programming to realize the hysteresis property. A
6-bit fixed point 2s complement arithmetic is used

for calculation of the input U. The 5-bit input U (U0,
Ul, ..., U4)is compared at the 5-bit comparator with
the specific value which will be equal to either LTP
or UTP. A multiplexer realized by three NOR gates
transmits the value of LTP or the value of UPT accord-
ing to the previous state of the neuron itself and is stored
in a leftmost flip-flop, The state of every neuron is up-
dated synchronously with a clock signal labeled CK2.
The 3-bit value of UTP is stored in the 3-bit shift
register through the serial input line named HYS. For
this purpose, another clock signal labeled CKI is
prepared.

Figure 6 shows the layout diagram of the hysteresis
McCulloch-Pitts binary neuron using the MOSIS
scalable CMOS/bulk VLSI technology with 2-yem rule
of P-well, double-level metal. A neuron needs a 299\
X 368X layout area.

Figure 7 shows the simple asynchronous digital cir-
cuit for the hysteresis McCulloch-Pitts binary neuron.
A 5-bit fixed point 2’s complement arithmetic is used
for the input U. For simplicity, LTP is set at 0 and UTP
is set a 2. The 5-bitinput U(UO, U1, ..., U4)is pro-
vided with the specific value of LTP and UTPF. The out-
put Vis 1 if input U is greater than 2, Vis 0 if U is
less than 0, and ¥ remains unchanged otherwise. Figure
8 shows the timing diagram of the simulation result.
Figure 9 shows the layout diagram of an asynchronized
hysteresis McCullach-Pitts binary neuron using the
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Fig. 5. Digital circuit diagram of the hysteresis McCulloch-Pitts binary neuron.

MOSIS scalable CMOS/bulk VLSI technelogy with
2-um rule of P-well, double-level metal. A neuron
needs a 92N X 109X layout area.

The asynchronous implementation is close to the
biological world. The advantage of the asynchronous
circuit is its smaller area, and thus larger networks can
be implemented in a chip. For the same complexity of
the neuron architecture the asynchronous circuit re-
quires just 10% of asynchranous silicon area.

3. Ramsey Number Problem

3.1. Problem Description [10]
The Ramsey number, R(r, b) is given by the smallest

value of N'; R(r, ) = N where all edges of a complete
graph of N — 1 vertices are colored either red or blue,

54

and red and blue subgraphs should not form any com-

plete subgraphs of r vertices and that of b vertices
respectively. A superimposed red and blue subgraph
is called 2 Ramsey graph.

According to the latest results for the Ramsey
numbers [11, 12], only seven Ramsey numbers, R(3,3),
R(3A), R(3,5), R(36), R(37), R(3,9), and R(4.4) have
been found and fixed, and the others are still unknown.

3.2. System Representation and Parallel Algorithm

We first define that V; and Uy, are the output and in-
put of the ijkth processing element, respectively and
the ijkth processing element represents the state of an
edge between the ith vertex and the jth vertex with kth
color, ¥V = 1 means the ijth edge is red and V), =
1 is blue.



CMOS Analog/Digital Circuits of the Bysteresis McCulloch-Pitts Neuron for Ramsey Numbers

hys nauren.cf scale: 0.015000 (381 Size: 368 x 398 microhs

Rua mauron

[ NCLR
[Elky

Hyer

Fig. 6 The layout of a synchronous hysteresis McCulloch-Pitts binary neuron,

—r:—Ll—v—‘r—‘:'—Tl—r—r—r‘v—r—r‘r:_‘
i [
vs B Buffer >“ v 3 : FoE o1
v e e
| | |
control ]
— i ; | ; i 1
U1 signal Ugw
uo I
I

]
L5B b

Fig. 7 Asynchronous digital circuit for the hysteresis McCulloch-Pitts

binary neuron. Fig. 8 The timing diagram of the simulation result.
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Fig. 9 The layout of an asynchronous hysteresis McCulloch-Pitts
binary neuron.

2
\Li
k=1 3

Figure 10a shows a system representation for find-
ing a Ramsey graph of the 5-vertex complete graph
where each square represents one processing element,
Twao processing elements are used to color an edge be-
tween the /th vertex and the jth vertex. One is for the
red edge and the other for blue. Generally n X (n —
1) processing elements are necessary because n(n —
1)/2 edges must be embedded in an n-vertex complete
graph. In figure 10a, 20 (= 5 (5 — 1)) processing
elements are used.

Figure 10b shows the solution state of processing
elements for Ramsey number, (R (3,3) — 1) whichis 5.
The black square and the white square show Vy = 1

2 2
3 3
k=1 k=2
4 4
{b) The Solution State for (R(3,3)-1)
1
k=1 ! k=2
2 5 2 5
3 4

3 4

(c) The Corresponding Ramsey Graph

Fig. 10. System representation for finding Ramsey graphs.
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and ¥ = 0 respectively. The 13th edge, the 14th
edge, the 23rd edge, 25th edge, and the 45th edge
are red (k = 1), and the 12th edge, 15th edge, the
24th edge, the 34th edge, and the 35th edge are blue
k= 2).

The state of the system in figure 10b represents the
subgraphs in figure 10c. The superimposed two-
subgraphs becotnes the Ramsey graph of the S-vertex
complete graph.

The hysteresis McCulloch-Pitts neuron model is
used to give the value of Vj;. The change of the Uy
is given by the motion equation

AUy OE(WVp, Vigas - Vactay, Vaey 2)
dt amjk

The energy function of the state, F is basically com-
posed of two parts: color constraint and edge violation.

The color constraint term for the ijth edge is given
by the equation

1 (< 2
Ll j, k) = - [Zv:-jk—lj 4)
2 g

This term is to force one and only one neuron to fire
in the ijth edge. In other words, the #jth edge must be
red or blue. If both two or no neuran is fired in the
ijth edge, then it becomes 1, 0 otherwise.

The edge violation conditions fo the ijkth edge are
shown in figure 11. If the assignment of the {jkth edge

i
i
A | q
] »
4

Vijk=Vipk=Vigk=Vpik=Vqjk=Vaqk

(3)

Vijk=Vipk=Vpjk

(a) Three Vertices (12} Four Vertices

Fig. 11. Violation conditions for the ijkth edge.

to the red (blue) subgraph creates complete subgraph
of r(b) vertices, the ijkth edge must not be embedded
in it. These violation terms R[i, j, 1] for red edges and
B[i, j, 2] for blue are given by

i3

R, j. 1] = 2,

p=1
B
K’p]ijlKjl forr =3 (5)

n n
R j, 1= 27 2
p=1 g=p+1
p#Lf g=ij
Viot¥ign %leqﬂqulVijl
forr = 4 ®)

Il
[™=

B, J, 2]

I3
Vl'p2ij2Vijﬂ fOT b = 3 (7)

n H

2 2

p=1 q=p+1
pEL] g#if
Vipz‘ Vti ijl Vqﬁ qu2 Kﬂ
forb =4 (8)

B[i, j. 2]

[ r n
Bli,j20= 2, 2, 2
p=1 q=p+1 r=g+1
p#ELJ g#i,f r#EL]
VieViVie VoV ViV
VprZVquK'jQ f()r b=25 (9)

n n n n
Blij21= 2, 2 2 X
p=1 g=p+l  r=g+1 s=r+tl
pHEL g#Eif r#i seij
VineVig2 Vi Vi Voa V2 Via Vi
X qu?.I]pIQF/pSZVquVqSZV!SZ
thz forb = 6 (10)

These conditions are nonzero if the assignment of the
ijkth edge to the red (biue) subgraph creates a com-
plete subgraph of r(b) vertices,

The energy functions of the ijk th processing element
for finding a Ramsey graph of the r-vertex complete
graph R(r, b) are given by

By =a-L[i,j, 11 + BRI, j, 11 — v+ Bli, j, 1]
1n
e Lli,f,2] = BRI}, 2] +v- B[ j, 2
(12)

1

E{ﬁ

where «, 8, and 4 are constant coefficients.
These motion equations of the ik th processing ele-
ment are given by equation (3) as follows:
dUy .. .
—=—a- L', j, 11 —8-R[j 1]
dr + v B 1 A1)

57



320 Cho, Tsuchiva, and Takefigi

dUyp , ,
_ = T’ L’[ls I 2] - )8 'R’[Is s 2’]
dt + oy B, J 21 (127)
where
2
L'Ti, j, k1 = 2,
k=1
Vi— 1 4"
n
R, j, 1] =
p=1
P#EL]
Viprpjl forr =3 (5’)
n n
REL= 2, 2
p=1 g=p+l
p#Ly gRij
Vl‘pl Viql ijl Vqﬂ qul
forr =4 (6"
H
B'li, j, 21 = ),
p=1
pRij
VipVpp  forb =3 (71
n n
Bl 2= D) 2
r=1 g=p+t!
p#id g=ij
VWiV orVeiaVog
for b = 4 8N
n n n
Blij2 = 25 2 2
p=1 p=g+1 r=q-+1
p#ELf qFig r#Eij
VirVigpViaVorV ooV erVea VerdVera
forb =5 91

n n K n
B j 2= 2, 2 > >
p=1 g=p+1 r=g-+1 s=r+1
pHELj g#ij r#EiLf S#EIj
VipaVigaViraVieaVpja Vg jaVipa Vipa
X quZVprVpsZVquVqsszZ
forb =06 (10")
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The first term on the right side of eq. (117) encour-
ages the sum of the output of the ijkth processing ele-
ment to be one so that the #kth edge is colored red or
blue. The second term encourages the output of the ij 1th
processing element to be zero if the if 1th edge creates
a complete subgraph of r vertices. The third term en-
courages the cutput of the ij Ith processing element to
be nonzero if the ij2th edge creates a complete subgraph
of b vertices.

In addition, we add the following hill-¢limbing term
to each motion equation:

2
@+ H[, j, k] = o - h[ > Vi j(m)
k=1

where h(x) = 1ifx = 0, 0 otherwise and w is a con-
stant coefficient. This term also plays an important role
to increase the frequency of the state of the system to
converge to the global minimum [3].

In this paper, the synchronous parallel system was
simulated on a Macintosh Powerbook170, although the
algorithm is executable in a parallel machine. The
synchronous parallel system can be performed on max-
imally z2(n — 1) processors for finding a Ramsey graph
of the n-vertex complete graph. The state of n(n — 1)
processing clements can be updated by using equations
(11", (12", and (13) with the first-order Euler
method.

3.3. Results and Discussion

The following five problems were solved by the
algorithm.
1. Problem 1: finding the Ramsey graph of S-vertex

complete graph for R(3,3)

2. Problem 2: finding the Ramsey graph of §-vertex

complete graph for R(3,4)

3. Problem 3: finding the Ramsey graph of 13-vertex

complete graph for R(3,5)

4. Problem 4: finding the Ramsey graph of 17-vertex

complete graph for R(3,6)

5. Prablem 2: finding the Ramsey graph of 17-vertex

complete graph for R(4,4)

Figures 12, 13, 14, and 15 show the simulation
results for problems 2, 3, 4, and 5 respectively. The
algorithm found several Ramsey graphs from the dif-
ferent initial values of Uyy. Table 1 shows the average
number of iteration steps and the frequency of the con-
vergence to solutions within 700 iteration steps, where
100 simulation runs were performed for each one of
five problems. In every simulation run, the different
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Fig. 15. A Ramsey graph with 17 vertices for R(4,4).

initial values were given. Figure 16 shows the relation-
ship between the frequency and the number of itera-
tion steps to solutions in problems | and 3. The simula-
tion results showed the consistency of the algorithm.
The primary goal of finding the Ramsey graphs using
our parallel algorithm was successfully achieved in
terms of the computation time and the solution quality.

Tabie 1. Sumunary of simulation results.

Problem Average number of Canvergence frequency
no. interation steps to sclutions
1. R(3,3) 28.7 100%
2. R(3,4) 101.6 100%
3. R(3,5) 248.9 85%
4. R(3,8) 373.4 2%
5. R(4,4) 361.0 1%
EOW
(&) The Problem #1

frequency
w
1)

100 200
the nurnber of iteration steps

{b} The Problem #3

frequency

Q 100 200 300 400 500 600 00
the number of iteration steps

Fig. 16. Relationship between the frequency and the number of iteta-
tion steps.

4. Conclasion

Digital/analog circuits of the hysteresis McCulloch-Pitts
neuron are presented in this paper. It can be used to
solve a variety of NP-complete problems. Based on our
estimation several thousands of asynchronous neurons
can be embedded in a singie chip based on the CMOS
technology. The asynchronous implementation is close
to the biological world. The advantage of the asynchro-
nous circuif is its smaller area, and thus larger networks
can be implemented in a chip. For the same complex-
ity of the neuron architecture the asynchronous circuit
requires just 10% of synchronous silicon area. The ad-
vantage of the fully digital implementation is good
expandability to larger network. In addition, single cir-
cuits can be joined together w form very large networks.
The advantages of an analog circuit are simpler basic
blocks and smaller area. However, the noise immun-
ity is worse that digital circuits.

The proposed parallel algorithm also finds Ramsey
graphs of several complete graphs with different Ramsey
numbers. The algorithm uses r(n — 1) processing
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elements for finding a Ramsey graph of ann-vertex com-
plete graph, The simmlation result of our algorithm with
silicon neural network shows that our approach is very
promising for finding unknown Ramsey numbers.
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