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A B S T R A C T

Ye et al. (2025) report strong QSAR performance for fluorocarbon inhalation toxicity using ‘SVM-RBF’ and 
‘XGBoost’, complemented by SHAP analyses to identify influential molecular descriptors. While predictive ac
curacy and generalization are commendable, the interpretability claims warrant caution. Supervised models 
possess two distinct accuracies—target prediction and feature-importance reliability—the latter lacking ground 
truth validation. Consequently, SHAP, as a model-dependent explainer, can faithfully reproduce and even 
amplify model biases, is sensitive to model specification, struggles with correlated descriptors, and does not infer 
causality. High accuracy does not guarantee reliable importances. We recommend augmenting the pipeline with 
unsupervised, label-agnostic descriptor prioritization (e.g., ‘feature agglomeration’, ‘highly variable feature se
lection’) followed by non-targeted association screening (e.g., Spearman correlation with p-values) to improve 
stability and mitigate model-induced interpretative errors.

Ye et al. (2025) explored QSAR-based prediction of acute inhalation 
toxicity and SHapley Additive exPlanations (SHAP) interpretability 
analysis of fluorocarbon environmental-friendly insulating gases. Their 
comprehensive evaluation identified SVM with radial basis function 
kernel and XGBoost as superior models, demonstrating exceptional 
predictive capability and robust generalization across diverse fluoro
carbon compounds. Through detailed SHAP analysis, Ye et al. success
fully identified critical molecular descriptors that significantly influence 
toxicity profiles, providing valuable mechanistic insights for the rational 
design of safer insulating gas alternatives with reduced environmental 
impact.

However, this paper raises significant theoretical and methodolog
ical concerns regarding the use of supervised models such as SVM and 
XGBoost for feature importance assessment. The model-specific nature 
of these approaches leads to potentially erroneous interpretations and 
conclusions about molecular descriptor importance. Critically, Ye et al. 
should acknowledge that supervised models possess two distinct types of 
accuracy: target prediction accuracy and feature importance reliability. 
While target prediction accuracy can be validated against ground truth 
values (labels), feature importances lack corresponding ground truth for 
accuracy validation, representing a fundamental limitation in their 
interpretability framework.

Feature importance in supervised models fundamentally refers to 
contributions to prediction mechanisms rather than true biological or 
chemical associations between variables. Consequently, feature impor
tances derived from supervised models are inherently biased, leading to 
potentially misleading interpretations (Adler and Painsky, 2022; Alaimo 
Di Loro et al., 2023; Dunne et al., 2023; Fisher et al., 2019; Huti et al., 
2023; Loecher, 2024; Nalenz et al., 2024; Nazer et al., 2023; Nguyen 
et al., 2015; Salles et al., 2021; Smith et al., 2024; Steiner and Kim, 2016; 
Strobl et al., 2007; Ugirumurera et al., 2024; Wallace et al., 2023; Zarei 
et al., 2021). Extensive research has demonstrated that high target 

prediction accuracy does not guarantee reliable feature importances, a 
critical distinction overlooked in this study (Fisher et al., 2019; Lenhof 
et al., 2024; Lipton, 2018; Mandler and Weigand, 2024; Molnar et al., 
2022a,b; Parr et al., 2024; Potharlanka and Bhat, 2024; Watson and 
Wright, 2021; Wood et al., 2024).

Furthermore, the function of explain = SHAP(model) implies that 
SHAP solely relies on a given supervised model, inheriting and propa
gating its inherent limitations and biases. This dependency means SHAP 
explanations are fundamentally constrained by the quality of the un
derlying model’s feature representation. SHAP may actually amplify 
model biases by presenting them as objective feature importance scores, 
creating a false sense of interpretative certainty. Recent research has 
identified fundamental mathematical limitations in Shapley-based ap
proaches, including issues with feature interdependence handling and 
inability to capture causal relationships. Additionally, SHAP values are 
highly susceptible to model specification effects—the same dataset 
analyzed with different model architectures can yield contradictory 
feature importance rankings, undermining the reliability of mechanistic 
insights drawn from any single model implementation. Even with 
technically correct SHAP implementation, the resulting explanations 
remain model-centric interpretations rather than data-centric truths 
about molecular descriptor significance. While SHAP is a mathemati
cally elegant approach, its exclusive reliance on potentially flawed 
feature representations from supervised models means it can faithfully 
produce misleading outcomes despite high prediction accuracy (Wu, 
2025; Bilodeau et al., 2024; Huang and Marques-Silva, 2024; Kumar 
et al., 2021; Hooshyar and Yang, 2024; Lones, 2024; Molnar et al., 
2022a,b; Létoffé et al., 2025; Ponce-Bobadilla et al., 2024; Coupland 
et al., 2025).

There is no algorithm to accurately calculate true associations be
tween variables. This paper advocates for incorporating unsupervised 
models such as feature agglomeration (FA) and highly variable gene 
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selection (HVGS), and followed by non-targeted nonlinear nonpara
metric methods such as Spearman’s correlation with p-values instead of 
solely relying on supervised models with SHAP. While supervised 
models must suffer from instability in feature importance ranking orders 
due to model specific nature and label-driven errors, FA, HVGS and 
Spearman exhibit stronger stability in feature ranking orders due to the 
absence of label-driven errors.
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