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ARTICLE INFO ABSTRACT

Keywords: Ye et al. (2025) report strong QSAR performance for fluorocarbon inhalation toxicity using ‘SVM-RBF’ and
QSAR ‘XGBoost’, complemented by SHAP analyses to identify influential molecular descriptors. While predictive ac-
SHAP . Lo curacy and generalization are commendable, the interpretability claims warrant caution. Supervised models
Feature importance reliability - . . . o lsls .

. . S possess two distinct accuracies—target prediction and feature-importance reliability—the latter lacking ground

Unsupervised descriptor prioritization . . . .

Fluorocarbon toxicity truth validation. Consequently, SHAP, as a model-dependent explainer, can faithfully reproduce and even
amplify model biases, is sensitive to model specification, struggles with correlated descriptors, and does not infer
causality. High accuracy does not guarantee reliable importances. We recommend augmenting the pipeline with
unsupervised, label-agnostic descriptor prioritization (e.g., ‘feature agglomeration’, ‘highly variable feature se-
lection’) followed by non-targeted association screening (e.g., Spearman correlation with p-values) to improve
stability and mitigate model-induced interpretative errors.

Ye et al. (2025) explored QSAR-based prediction of acute inhalation
toxicity and SHapley Additive exPlanations (SHAP) interpretability
analysis of fluorocarbon environmental-friendly insulating gases. Their
comprehensive evaluation identified SVM with radial basis function
kernel and XGBoost as superior models, demonstrating exceptional
predictive capability and robust generalization across diverse fluoro-
carbon compounds. Through detailed SHAP analysis, Ye et al. success-
fully identified critical molecular descriptors that significantly influence
toxicity profiles, providing valuable mechanistic insights for the rational
design of safer insulating gas alternatives with reduced environmental
impact.

However, this paper raises significant theoretical and methodolog-
ical concerns regarding the use of supervised models such as SVM and
XGBoost for feature importance assessment. The model-specific nature
of these approaches leads to potentially erroneous interpretations and
conclusions about molecular descriptor importance. Critically, Ye et al.
should acknowledge that supervised models possess two distinct types of
accuracy: target prediction accuracy and feature importance reliability.
While target prediction accuracy can be validated against ground truth
values (labels), feature importances lack corresponding ground truth for
accuracy validation, representing a fundamental limitation in their
interpretability framework.

Feature importance in supervised models fundamentally refers to
contributions to prediction mechanisms rather than true biological or
chemical associations between variables. Consequently, feature impor-
tances derived from supervised models are inherently biased, leading to
potentially misleading interpretations (Adler and Painsky, 2022; Alaimo
Di Loro et al., 2023; Dunne et al., 2023; Fisher et al., 2019; Huti et al.,
2023; Loecher, 2024; Nalenz et al., 2024; Nazer et al., 2023; Nguyen
et al., 2015; Salles et al., 2021; Smith et al., 2024; Steiner and Kim, 2016;
Strobl et al., 2007; Ugirumurera et al., 2024; Wallace et al., 2023; Zarei
et al., 2021). Extensive research has demonstrated that high target
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prediction accuracy does not guarantee reliable feature importances, a
critical distinction overlooked in this study (Fisher et al., 2019; Lenhof
et al., 2024; Lipton, 2018; Mandler and Weigand, 2024; Molnar et al.,
2022a,b; Parr et al., 2024; Potharlanka and Bhat, 2024; Watson and
Wright, 2021; Wood et al., 2024).

Furthermore, the function of explain = SHAP(model) implies that
SHAP solely relies on a given supervised model, inheriting and propa-
gating its inherent limitations and biases. This dependency means SHAP
explanations are fundamentally constrained by the quality of the un-
derlying model’s feature representation. SHAP may actually amplify
model biases by presenting them as objective feature importance scores,
creating a false sense of interpretative certainty. Recent research has
identified fundamental mathematical limitations in Shapley-based ap-
proaches, including issues with feature interdependence handling and
inability to capture causal relationships. Additionally, SHAP values are
highly susceptible to model specification effects—the same dataset
analyzed with different model architectures can yield contradictory
feature importance rankings, undermining the reliability of mechanistic
insights drawn from any single model implementation. Even with
technically correct SHAP implementation, the resulting explanations
remain model-centric interpretations rather than data-centric truths
about molecular descriptor significance. While SHAP is a mathemati-
cally elegant approach, its exclusive reliance on potentially flawed
feature representations from supervised models means it can faithfully
produce misleading outcomes despite high prediction accuracy (Wu,
2025; Bilodeau et al., 2024; Huang and Marques-Silva, 2024; Kumar
et al.,, 2021; Hooshyar and Yang, 2024; Lones, 2024; Molnar et al.,
2022a,b; Létoffé et al., 2025; Ponce-Bobadilla et al., 2024; Coupland
et al., 2025).

There is no algorithm to accurately calculate true associations be-
tween variables. This paper advocates for incorporating unsupervised
models such as feature agglomeration (FA) and highly variable gene
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selection (HVGS), and followed by non-targeted nonlinear nonpara-
metric methods such as Spearman’s correlation with p-values instead of
solely relying on supervised models with SHAP. While supervised
models must suffer from instability in feature importance ranking orders
due to model specific nature and label-driven errors, FA, HVGS and
Spearman exhibit stronger stability in feature ranking orders due to the
absence of label-driven errors.
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