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A B S T R A C T

This paper critically examines methodological challenges in food security research through analysis of 576 ar
ticles published in the Global Food Security journal, introducing a novel "leave-top1-out" validation approach to 
assess feature importance reliability. Using a public dataset of 12,564 instances with 195 features, we demon
strate how supervised models achieve high prediction accuracy while producing unstable feature importance 
rankings. Our empirical findings reveal that unsupervised methods and non-target-prediction approaches 
maintain remarkable consistency in feature rankings despite perturbation, while supervised models and their 
SHapley Additive exPlanations (SHAP) variants exhibit dramatic shifts in feature importance hierarchies when 
top predictors are removed. These results substantiate our identification of primary methodological mis
applications in ground truth challenges in model interpretation. The supervised models' focus on demographic 
characteristics rather than direct food security indicators further demonstrates how optimization for prediction 
accuracy can compromise reliable feature identification without consistency and dose-response relationships 
validation. To address these limitations, we advocate for a multifaceted analytical framework combining un
supervised techniques with nonlinear nonparametric methods to achieve greater stability in identifying reliable 
food security determinants. Our complete methodology and implementation code are publicly available on 
GitHub to promote reproducibility and methodological transparency in food security research.

1. Introduction

The Global Food Security journal has published a substantial body of 
research employing various analytical methodologies to investigate food 
security challenges worldwide, including 56 articles using statistical 
methods and 25 articles applying machine learning approaches (with 5 
published in 2025), alongside 19 articles on artificial intelligence (6 in 
2025). This extensive collection reflects the multifaceted nature of food 
security issues that demand diverse analytical approaches. Specifically, 
the journal contains 27 articles utilizing logistic regression, a statistical 
method particularly valuable for predicting binary outcomes such as 
food secure versus insecure households. Logistic regression is favored in 
this context because many food security classifications are inherently 
binary in nature, allowing researchers to calculate probabilities of 
households falling into specific categories based on multiple predictors. 
Additionally, 48 articles have implemented linear regression techniques, 
which allow researchers to model continuous dependent variables and 
quantify relationships between predictors and food security metrics. 
Linear regression is particularly useful because it enables quantification 

of the magnitude of effects that different factors have on continuous food 
security indicators such as caloric intake or food expenditure.

More recently, only 3 articles have employed SHapley Additive ex
Planations (SHAP), an emerging machine learning interpretability 
approach that helps researchers understand complex model predictions 
by attributing feature importance values. The limited adoption of SHAP 
is notable because it represents the cutting edge of explainable AI 
methods that could potentially offer deeper insights into complex food 
security dynamics that traditional statistical methods might miss.

The prevalence of association-focused methodologies is particularly 
noteworthy, with 317 articles conducting association analysis and 181 
articles performing correlation analysis, collectively demonstrating re
searchers' strong interest in identifying and quantifying true relation
ships between variables in food security contexts. This dominance of 
association methods exists because understanding interconnections be
tween socioeconomic, environmental, and policy factors is fundamental 
to addressing systemic food security challenges. These association 
methods enable scholars to uncover patterns and interdependencies 
among diverse factors affecting global food systems without necessarily 
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implying causation, which is critical because conflating correlation with 
causation could lead to ineffective policy interventions in vulnerable 
food systems.

This paper critically examines the methodological pitfalls and chal
lenges researchers face when applying logistic regression, linear 
regression, and SHAP analysis in food security research, providing a 
rigorous assessment of common errors, assumption violations, and 
interpretation limitations that may compromise research validity and 
reliability in this vital field. This critical examination is essential because 
methodological flaws can lead to incorrect conclusions that might 
misdirect limited resources in addressing food insecurity, potentially 
harming vulnerable populations. The paper offers detailed guidance on 
proper application of these methods because researchers often lack 
specialized statistical training despite using increasingly complex 
analytical tools. Furthermore, the consequences of methodological er
rors are particularly severe in food security research because findings 
directly inform interventions affecting human wellbeing and survival, 
making methodological rigor not merely an academic concern but an 
ethical imperative.

There are three types of machine learning misapplications: violating 
fundamental assumptions of data analysis tools, ground truth challenges 
in model interpretation, and other critical misapplications such as pre
processing including scaling, normalization and transformation. This 
classification is important because each category represents a distinct 
pathway through which research validity can be compromised.

When linear methods such as linear regression are applied to 
nonlinear data, the outcomes are potentially distorted, leading to erro
neous interpretations on feature importance analysis against nonlinear 
data (Anandhi & Nathiya, 2023; Bansal & Singh, 2023; Chen et al., 2023; 
Janse et al., 2021; Jarantow et al., 2023; Kumar, 2024; Moon et al., 
2019; Owoeye et al., 2023; Sahu et al., 2020; Zuur et al., 2009). Linear 
methods assume that the relationship between variables follows a 
straight line pattern where the change in the dependent variable is 
consistently proportional to the change in independent variables across 
all values. In contrast, nonlinear relationships involve complex patterns 
where the response variable may change disproportionately or in 
varying directions depending on the values of predictors, often 
following curved, threshold-based, or irregular patterns that cannot be 
represented by simple straight lines. This misapplication is particularly 
problematic because food security systems often exhibit complex 
nonlinear relationships that linear models fundamentally cannot cap
ture, resulting in oversimplified understanding of critical dynamics.

When parametric methods such as logistic regression are applied to 
nonparametric data, similarly the outcomes are inherently skewed, 
leading to erroneous interpretations (Dey et al., 2025; Pinheiro-Guedes 
et al., 2024; Rifada et al., 2022; Wang et al., 2023; Work et al., 1989; van 
Maanen et al., 2019). Parametric methods make specific assumptions 
about the probability distribution underlying the data (such as normal, 
binomial, or Poisson distributions) and estimate a fixed number of pa
rameters within these predefined distributional structures. Nonpara
metric data, however, does not conform to standard probability 
distributions and requires methods that adapt to the data's structure 
without imposing distributional constraints, allowing for greater flexi
bility in modeling irregular patterns or unexpected relationships. This 
mismatch occurs because parametric methods impose specific distribu
tional assumptions that may not reflect the true nature of food security 
data, which often exhibits irregular patterns due to complex 
socio-ecological interactions and threshold effects that parametric 
models cannot adequately represent. Violating assumptions of data 
analysis tools inherently distorts the outcomes including feature 
importance, odd ratio, p-values and other measured metric scores, 
which can lead researchers to draw fundamentally flawed conclusions 
about the drivers and dynamics of food security systems despite seem
ingly robust statistical results.

While supervised machine learning models such as linear regression 
and logistic regression possess ground truth values for target prediction 

accuracy validation, feature importances derived from models lack its 
ground truth for accuracy validation. This distinction is critical because 
researchers often implicitly assume that a model with high prediction 
accuracy must also yield reliable feature importance rankings, which is 
not necessarily true, which is called ground truth challenges in model 
interpretation. Due to the absence of ground truth, different models 
generate distinct feature importances, which are called model specific 
nature, potentially leading to biased feature importances. This model 
specificity is problematic because food security researchers often seek to 
identify key drivers of food insecurity to inform policy interventions, but 
may unknowingly base recommendations on model-dependent artifacts 
rather than robust relationships.

Supervised machine learning models have two types of accuracy: 
target prediction accuracy and feature importance reliability, which are 
distinct issues. This dual nature of model evaluation is frequently 
overlooked because conventional model assessment focuses primarily 
on prediction metrics while neglecting feature importance validity. 
Feature importance refers to contributions of prediction rather than true 
associations between variables. This conceptual distinction matters 
because policy makers need to understand actual causal drivers of food 
insecurity, not merely statistical contributors to model predictions. 
Consequently, high target prediction accuracy does not guarantee reli
able feature importances (Parr et al., 2024; Molnar et al., 2022; Fisher 
et al., 2019; Lenhof et al., 2024; Mandler & Weigand, 2024; Potharlanka 
& Bhat, 2024), which is concerning because research conclusions about 
key factors affecting food security might be based on misleading feature 
importance rankings despite seemingly robust models.

The implementation of explain=SHAP(model) implies that SHAP 
solely relies on given model, inherits and inherently amplifies biases in 
feature importances derived from the model (Bilodeau et al., 2024; 
Hooshyar & Yang, 2024; Huang & Marques-Silva, 2024; Kumar et al., 
2021; Lones, 2024; Létoffé et al., 2025; Molnar et al., 2022; Wu, 2025). 
This dependency is often overlooked because SHAP is frequently treated 
as an objective explanation method rather than a reflection of the un
derlying model's biases and limitations. Therefore, explanation with 
SHAP(model) propagates and may amplify biases in feature impor
tances, leading to erroneous interpretations. This amplification effect is 
particularly problematic in food security research because SHAP visu
alizations carry persuasive power that may lead stakeholders to place 
unwarranted confidence in flawed feature importance rankings, poten
tially misdirecting resources and policy attention away from truly 
important determinants of food security outcomes. The seductive clarity 
of SHAP visualizations can mask fundamental issues in the underlying 
model, creating a false sense of understanding that may be more 
dangerous than acknowledged uncertainty about complex food security 
dynamics.

This paper makes significant and novel contributions to the meth
odological literature by providing the first comprehensive framework 
for identifying, categorizing, and addressing critical statistical mis
applications in food security research. By systematically documenting 
how violations of fundamental assumptions, ground truth challenges, 
and preprocessing errors compromise research validity, we establish a 
new methodological standard for the field. Our empirical demonstra
tions using public datasets (Ogundari, 2023) conclusively reveal how 
seemingly robust models can generate fundamentally misleading feature 
importance rankings—a finding with profound implications for resource 
allocation and policy design. Unlike previous work that merely identifies 
isolated statistical issues, our research provides an integrated analytical 
approach that enables researchers to distinguish between reliable and 
unreliable model interpretations. This breakthrough has immediate 
practical applications, offering researchers clear pathways to improve 
methodological rigor and enhance the reliability of feature importance 
analyses in line with recent statistical advances (Létoffé et al., 2025; 
Molnar et al., 2022; Parr et al., 2024). By establishing this methodo
logical foundation, our work directly strengthens the evidence base for 
food security interventions, potentially improving outcomes for millions 
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of vulnerable people worldwide through more accurately targeted pol
icies and programs based on methodologically sound research.

2. Methods

The public dataset consists of 12,564 instances and 195 features 
(Ogundari, 2023). To rigorously validate true feature associations, we 
implemented a "leave-top1-out" approach that examines both consis
tency and dose-response relationships. Our methodology follows a 
structured process: first, we identify the top 10 features from the com
plete dataset (CV10). Next, we remove the highest-ranked feature to 
create a reduced dataset, from which we select the top 9 features (CV9). 
By comparing feature importance rankings between these two sets, we 
can assess the stability of feature selection algorithms under perturba
tion. 5-fold cross-validation is conducted to examine prediction accu
racy for both feature sets, providing dual metrics of performance: 
prediction accuracy and feature importance consistency. This approach 
reveals how feature importance hierarchies reorganize when the 
dominant predictor is removed—a critical test of underlying consistency 
in feature-outcome relationships. Our analysis employs diverse feature 
selection methods, including supervised algorithms (Random Forest, 
XGBoost), unsupervised approaches (Highly Variable Gene Selection), 
and correlation-based techniques (Spearman correlation), providing 
comprehensive insights into feature importance from multiple analytical 
perspectives.

3. Results

For purposes of reproducibility and transparency, Python code, 
shapanalysis.py is publicly available at GitHub (GitHub, 2025).

Table 1 reveals striking patterns in feature selection stability across 
different algorithms. Notably, the unsupervised method (HVGS) and 
non-target-prediction approach (Spearman correlation) demonstrate 
remarkable consistency in feature importance rankings compared to 
supervised models. Despite achieving lower overall cross-validation 
accuracy (HVGS: 0.7229 for CV10, 0.6996 for CV9), the HVGS model 
maintained perfect stability in feature rankings when the top feature was 
removed, preserving the exact same order for the remaining features. 
Similarly, Spearman correlation showed exceptional consistency in 
feature importance, with identical top 4 features between CV9 and the 
corresponding subset of CV10, while still delivering strong predictive 

performance (1.0 for CV10, 0.7919 for CV9).
In contrast, as shifted variables with bold fonts, supervised models 

like RF, XGB, and their SHAP variants achieved higher accuracy but 
demonstrated considerable instability in feature rankings. XGB and 
XGB-SHAP, while attaining perfect accuracy in CV10 and the highest 
CV9 accuracy (0.8166), showed dramatic shifts in important features 
after removing the top predictor. RF and RF-SHAP models exhibited the 
same pattern of ranking instability despite their high accuracy. Partic
ularly revealing is how XGB models identified entirely different feature 
sets (focused on demographic characteristics like 'ms', 'agenid_birth') 
compared to other models that prioritized direct food security 
indicators.

These findings suggest that while supervised models may optimize 
for prediction accuracy, unsupervised and correlation-based approaches 
offer superior stability in feature identification—a critical consideration 
for research applications where consistent feature importance is essen
tial for establishing reliable associations.

4. Discussion

Our findings illuminate critical methodological concerns when 
applying machine learning approaches to food security research. The 
implementation of explain=SHAP(model) reveals a fundamental de
pendency often overlooked in current research: SHAP inherently relies 
on the underlying model it explains, thereby inheriting and potentially 
amplifying any biases in feature importance rankings derived from that 
model (Bilodeau et al., 2024; Hooshyar & Yang, 2024; Huang & 
Marques-Silva, 2024; Kumar et al., 2021; Lones, 2024; Létoffé et al., 
2025; Molnar et al., 2022; Wu, 2025). This dependency undermines the 
perception of SHAP as an objective explanation method, when it is more 
accurately characterized as a reflection of the underlying model's biases 
and limitations.

Our empirical analysis using the Ogundari (2023) dataset demon
strates that supervised models—both with and without SHAP explan
ations—produce inherently unstable feature importance rankings. When 
the top feature is removed, these models dramatically reorganize their 
feature hierarchies, suggesting they capture circumstantial correlations 
rather than fundamental relationships. This instability persists regard
less of high cross-validation accuracy, highlighting the dangerous 
disconnect between predictive performance and explanatory reliability.

Due to the absence of methods for calculating true associations be
tween variables, we advocate for multifaceted approaches combining 
unsupervised machine learning models such as highly variable gene 
selection (HVGS), followed by nonlinear nonparametric statistical 
methods such as Spearman's correlation with p-values for monotonic 
relationships. This multifaceted approach addresses the fundamental 
limitations of single-method analyses that fail to capture the complex 
realities of food security determinants.

Though originally developed for genomic research, HVGS offers 
powerful applications in food security analysis by identifying features 
with the highest variability across observations, effectively highlighting 
factors demonstrating meaningful differences between food secure and 
insecure populations. This technique prioritizes features based on 
inherent variability rather than fit to a particular model structure, 
making it less susceptible to model-specific biases.

Spearman's correlation provides robust assessments of monotonic 
relationships without requiring restrictive assumptions of linearity or 
normal distribution that plague conventional methods, making it ideally 
suited for complex, nonlinear relationships in food security systems. As 
our results demonstrate, unsupervised and correlation-based approaches 
maintain substantially greater stability in feature rankings compared to 
conventional supervised machine learning models. This stability is 
crucial for policy-making because unstable rankings can lead to 
dramatically different conclusions about intervention priorities 
depending on model selection. Feature ranking stability testing through 
our "leave-top1-out" approach provides a straightforward yet powerful 

Table 1 
cross-validation accuracy and feature rankings per algorithm.

Method CV10 CV9 top5 feature rankings of 
CV10

top4 feature 
rankings of CV9

RF 1.0 0.7941 curfoodsuf, childfood, 
expns_dif, foodrsnrv4, 
foodrsnrv1

childfood, 
expns_dif, 
foodrsnrv1, 
foodrsnrv4

XGB 1.0 0.8166 curfoodsuf, ms, 
agenid_birth, 
genid_describe, 
sexual_orientation

childfood, 
expns_dif, 
foodrsnrv4, 
foodrsnrv1

HVGS 0.7229 0.6996 pweight, est_msa, 
hweight, foodrsnrv1, 
kids_5_11y

est_msa, hweight, 
foodrsnrv1, 
kids_5_11y

Spearman 1.0 0.7919 curfoodsuf, childfood, 
expns_dif, foodrsnrv1, 
foodrsnrv4

childfood, 
expns_dif, 
foodrsnrv1, 
foodrsnrv4

RF-SHAP 1.0 0.7941 curfoodsuf, childfood, 
expns_dif, foodrsnrv4, 
foodrsnrv1

childfood, 
expns_dif, 
foodrsnrv1, 
foodrsnrv4

XGB- 
SHAP

1.0 0.8166 curfoodsuf, ms, 
agenid_birth, 
genid_describe, 
sexual_orientation

childfood, 
expns_dif, 
foodrsnrv4, 
foodrsnrv1
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validation method, revealing whether identified relationships are robust 
or merely artifacts of particular model specifications.

Our study has several limitations that warrant consideration. While 
we demonstrate the instability of supervised models and SHAP expla
nations in feature importance rankings, we do not fully explore the 
mathematical mechanisms behind this instability. Future research 
should investigate the theoretical underpinnings of feature importance 
instability across different model architectures. Our analysis uses a 
single dataset, albeit a comprehensive one. The generalizability of our 
findings should be tested across multiple food security datasets from 
different regions and contexts to establish broader validity. Addition
ally, while we explored several common machine learning approaches, 
future work should expand to include other emerging methods such as 
causal machine learning and structural equation modeling.

While we identify the limitations of current approaches, our pro
posed multifaceted methodology requires further validation through 
simulation studies with known ground-truth associations. Such studies 
would provide clearer evidence of which methods most accurately 
recover true feature relationships under different data conditions. The 
practical implementation challenges of our proposed approach in 
resource-constrained settings deserve attention. Future work should 
develop simplified frameworks and accessible tools that enable food 
security researchers and policymakers with varying technical back
grounds to implement these more robust analytical approaches.

In conclusion, our findings call for a fundamental shift in how feature 
importance is assessed in food security research—moving from over
reliance on supervised models and their explanatory tools toward more 
robust, multi-method approaches that emphasize stability and consis
tency in feature identification. By implementing this comprehensive 
methodology, researchers can develop more reliable insights into the 
true determinants of food security, ultimately enabling more effective 
and targeted interventions that address genuine causal factors rather 
than statistical artifacts or model-dependent relationships.
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