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This paper critically examines methodological challenges in food security research through analysis of 576 ar-
ticles published in the Global Food Security journal, introducing a novel "leave-top1-out" validation approach to
assess feature importance reliability. Using a public dataset of 12,564 instances with 195 features, we demon-
strate how supervised models achieve high prediction accuracy while producing unstable feature importance
rankings. Our empirical findings reveal that unsupervised methods and non-target-prediction approaches
maintain remarkable consistency in feature rankings despite perturbation, while supervised models and their
SHapley Additive exPlanations (SHAP) variants exhibit dramatic shifts in feature importance hierarchies when
top predictors are removed. These results substantiate our identification of primary methodological mis-
applications in ground truth challenges in model interpretation. The supervised models' focus on demographic
characteristics rather than direct food security indicators further demonstrates how optimization for prediction
accuracy can compromise reliable feature identification without consistency and dose-response relationships
validation. To address these limitations, we advocate for a multifaceted analytical framework combining un-
supervised techniques with nonlinear nonparametric methods to achieve greater stability in identifying reliable
food security determinants. Our complete methodology and implementation code are publicly available on

GitHub to promote reproducibility and methodological transparency in food security research.

1. Introduction

The Global Food Security journal has published a substantial body of
research employing various analytical methodologies to investigate food
security challenges worldwide, including 56 articles using statistical
methods and 25 articles applying machine learning approaches (with 5
published in 2025), alongside 19 articles on artificial intelligence (6 in
2025). This extensive collection reflects the multifaceted nature of food
security issues that demand diverse analytical approaches. Specifically,
the journal contains 27 articles utilizing logistic regression, a statistical
method particularly valuable for predicting binary outcomes such as
food secure versus insecure households. Logistic regression is favored in
this context because many food security classifications are inherently
binary in nature, allowing researchers to calculate probabilities of
households falling into specific categories based on multiple predictors.
Additionally, 48 articles have implemented linear regression techniques,
which allow researchers to model continuous dependent variables and
quantify relationships between predictors and food security metrics.
Linear regression is particularly useful because it enables quantification
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of the magnitude of effects that different factors have on continuous food
security indicators such as caloric intake or food expenditure.

More recently, only 3 articles have employed SHapley Additive ex-
Planations (SHAP), an emerging machine learning interpretability
approach that helps researchers understand complex model predictions
by attributing feature importance values. The limited adoption of SHAP
is notable because it represents the cutting edge of explainable Al
methods that could potentially offer deeper insights into complex food
security dynamics that traditional statistical methods might miss.

The prevalence of association-focused methodologies is particularly
noteworthy, with 317 articles conducting association analysis and 181
articles performing correlation analysis, collectively demonstrating re-
searchers' strong interest in identifying and quantifying true relation-
ships between variables in food security contexts. This dominance of
association methods exists because understanding interconnections be-
tween socioeconomic, environmental, and policy factors is fundamental
to addressing systemic food security challenges. These association
methods enable scholars to uncover patterns and interdependencies
among diverse factors affecting global food systems without necessarily
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implying causation, which is critical because conflating correlation with
causation could lead to ineffective policy interventions in vulnerable
food systems.

This paper critically examines the methodological pitfalls and chal-
lenges researchers face when applying logistic regression, linear
regression, and SHAP analysis in food security research, providing a
rigorous assessment of common errors, assumption violations, and
interpretation limitations that may compromise research validity and
reliability in this vital field. This critical examination is essential because
methodological flaws can lead to incorrect conclusions that might
misdirect limited resources in addressing food insecurity, potentially
harming vulnerable populations. The paper offers detailed guidance on
proper application of these methods because researchers often lack
specialized statistical training despite using increasingly complex
analytical tools. Furthermore, the consequences of methodological er-
rors are particularly severe in food security research because findings
directly inform interventions affecting human wellbeing and survival,
making methodological rigor not merely an academic concern but an
ethical imperative.

There are three types of machine learning misapplications: violating
fundamental assumptions of data analysis tools, ground truth challenges
in model interpretation, and other critical misapplications such as pre-
processing including scaling, normalization and transformation. This
classification is important because each category represents a distinct
pathway through which research validity can be compromised.

When linear methods such as linear regression are applied to
nonlinear data, the outcomes are potentially distorted, leading to erro-
neous interpretations on feature importance analysis against nonlinear
data (Anandhi & Nathiya, 2023; Bansal & Singh, 2023; Chen et al., 2023;
Janse et al., 2021; Jarantow et al., 2023; Kumar, 2024; Moon et al.,
2019; Owoeye et al., 2023; Sahu et al., 2020; Zuur et al., 2009). Linear
methods assume that the relationship between variables follows a
straight line pattern where the change in the dependent variable is
consistently proportional to the change in independent variables across
all values. In contrast, nonlinear relationships involve complex patterns
where the response variable may change disproportionately or in
varying directions depending on the values of predictors, often
following curved, threshold-based, or irregular patterns that cannot be
represented by simple straight lines. This misapplication is particularly
problematic because food security systems often exhibit complex
nonlinear relationships that linear models fundamentally cannot cap-
ture, resulting in oversimplified understanding of critical dynamics.

When parametric methods such as logistic regression are applied to
nonparametric data, similarly the outcomes are inherently skewed,
leading to erroneous interpretations (Dey et al., 2025; Pinheiro-Guedes
etal., 2024; Rifada et al., 2022; Wang et al., 2023; Work et al., 1989; van
Maanen et al., 2019). Parametric methods make specific assumptions
about the probability distribution underlying the data (such as normal,
binomial, or Poisson distributions) and estimate a fixed number of pa-
rameters within these predefined distributional structures. Nonpara-
metric data, however, does not conform to standard probability
distributions and requires methods that adapt to the data's structure
without imposing distributional constraints, allowing for greater flexi-
bility in modeling irregular patterns or unexpected relationships. This
mismatch occurs because parametric methods impose specific distribu-
tional assumptions that may not reflect the true nature of food security
data, which often exhibits irregular patterns due to complex
socio-ecological interactions and threshold effects that parametric
models cannot adequately represent. Violating assumptions of data
analysis tools inherently distorts the outcomes including feature
importance, odd ratio, p-values and other measured metric scores,
which can lead researchers to draw fundamentally flawed conclusions
about the drivers and dynamics of food security systems despite seem-
ingly robust statistical results.

While supervised machine learning models such as linear regression
and logistic regression possess ground truth values for target prediction
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accuracy validation, feature importances derived from models lack its
ground truth for accuracy validation. This distinction is critical because
researchers often implicitly assume that a model with high prediction
accuracy must also yield reliable feature importance rankings, which is
not necessarily true, which is called ground truth challenges in model
interpretation. Due to the absence of ground truth, different models
generate distinct feature importances, which are called model specific
nature, potentially leading to biased feature importances. This model
specificity is problematic because food security researchers often seek to
identify key drivers of food insecurity to inform policy interventions, but
may unknowingly base recommendations on model-dependent artifacts
rather than robust relationships.

Supervised machine learning models have two types of accuracy:
target prediction accuracy and feature importance reliability, which are
distinct issues. This dual nature of model evaluation is frequently
overlooked because conventional model assessment focuses primarily
on prediction metrics while neglecting feature importance validity.
Feature importance refers to contributions of prediction rather than true
associations between variables. This conceptual distinction matters
because policy makers need to understand actual causal drivers of food
insecurity, not merely statistical contributors to model predictions.
Consequently, high target prediction accuracy does not guarantee reli-
able feature importances (Parr et al., 2024; Molnar et al., 2022; Fisher
etal., 2019; Lenhof et al., 2024; Mandler & Weigand, 2024; Potharlanka
& Bhat, 2024), which is concerning because research conclusions about
key factors affecting food security might be based on misleading feature
importance rankings despite seemingly robust models.

The implementation of explain=SHAP(model) implies that SHAP
solely relies on given model, inherits and inherently amplifies biases in
feature importances derived from the model (Bilodeau et al., 2024;
Hooshyar & Yang, 2024; Huang & Marques-Silva, 2024; Kumar et al.,
2021; Lones, 2024; Létoffé et al., 2025; Molnar et al., 2022; Wu, 2025).
This dependency is often overlooked because SHAP is frequently treated
as an objective explanation method rather than a reflection of the un-
derlying model's biases and limitations. Therefore, explanation with
SHAP(model) propagates and may amplify biases in feature impor-
tances, leading to erroneous interpretations. This amplification effect is
particularly problematic in food security research because SHAP visu-
alizations carry persuasive power that may lead stakeholders to place
unwarranted confidence in flawed feature importance rankings, poten-
tially misdirecting resources and policy attention away from truly
important determinants of food security outcomes. The seductive clarity
of SHAP visualizations can mask fundamental issues in the underlying
model, creating a false sense of understanding that may be more
dangerous than acknowledged uncertainty about complex food security
dynamics.

This paper makes significant and novel contributions to the meth-
odological literature by providing the first comprehensive framework
for identifying, categorizing, and addressing critical statistical mis-
applications in food security research. By systematically documenting
how violations of fundamental assumptions, ground truth challenges,
and preprocessing errors compromise research validity, we establish a
new methodological standard for the field. Our empirical demonstra-
tions using public datasets (Ogundari, 2023) conclusively reveal how
seemingly robust models can generate fundamentally misleading feature
importance rankings—a finding with profound implications for resource
allocation and policy design. Unlike previous work that merely identifies
isolated statistical issues, our research provides an integrated analytical
approach that enables researchers to distinguish between reliable and
unreliable model interpretations. This breakthrough has immediate
practical applications, offering researchers clear pathways to improve
methodological rigor and enhance the reliability of feature importance
analyses in line with recent statistical advances (Létoffé et al., 2025;
Molnar et al., 2022; Parr et al., 2024). By establishing this methodo-
logical foundation, our work directly strengthens the evidence base for
food security interventions, potentially improving outcomes for millions
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of vulnerable people worldwide through more accurately targeted pol-
icies and programs based on methodologically sound research.

2. Methods

The public dataset consists of 12,564 instances and 195 features
(Ogundari, 2023). To rigorously validate true feature associations, we
implemented a "leave-topl-out" approach that examines both consis-
tency and dose-response relationships. Our methodology follows a
structured process: first, we identify the top 10 features from the com-
plete dataset (CV10). Next, we remove the highest-ranked feature to
create a reduced dataset, from which we select the top 9 features (CV9).
By comparing feature importance rankings between these two sets, we
can assess the stability of feature selection algorithms under perturba-
tion. 5-fold cross-validation is conducted to examine prediction accu-
racy for both feature sets, providing dual metrics of performance:
prediction accuracy and feature importance consistency. This approach
reveals how feature importance hierarchies reorganize when the
dominant predictor is removed—a critical test of underlying consistency
in feature-outcome relationships. Our analysis employs diverse feature
selection methods, including supervised algorithms (Random Forest,
XGBoost), unsupervised approaches (Highly Variable Gene Selection),
and correlation-based techniques (Spearman correlation), providing
comprehensive insights into feature importance from multiple analytical
perspectives.

3. Results

For purposes of reproducibility and transparency, Python code,
shapanalysis.py is publicly available at GitHub (GitHub, 2025).

Table 1 reveals striking patterns in feature selection stability across
different algorithms. Notably, the unsupervised method (HVGS) and
non-target-prediction approach (Spearman correlation) demonstrate
remarkable consistency in feature importance rankings compared to
supervised models. Despite achieving lower overall cross-validation
accuracy (HVGS: 0.7229 for CV10, 0.6996 for CV9), the HVGS model
maintained perfect stability in feature rankings when the top feature was
removed, preserving the exact same order for the remaining features.
Similarly, Spearman correlation showed exceptional consistency in
feature importance, with identical top 4 features between CV9 and the
corresponding subset of CV10, while still delivering strong predictive

Table 1
cross-validation accuracy and feature rankings per algorithm.

Method CV10 CvV9 top5 feature rankings of top4 feature
CV10 rankings of CV9
RF 1.0 0.7941 curfoodsuf, childfood, childfood,
expns_dif, foodrsnrv4, expns_dif,
foodrsnrvl foodrsnrvl,
foodrsnrv4
XGB 1.0 0.8166 curfoodsuf, ms, childfood,
agenid_birth, expns_dif,
genid_describe, foodrsnrv4,
sexual_orientation foodrsnrvl
HVGS 0.7229  0.6996  pweight, est_msa, est_msa, hweight,
hweight, foodrsnrv1, foodrsnrvl,
kids_5_11y kids 5_11y
Spearman 1.0 0.7919 curfoodsuf, childfood, childfood,
expns_dif, foodrsnrvl, expns_dif,
foodrsnrv4 foodrsnrvl,
foodrsnrv4
RF-SHAP 1.0 0.7941 curfoodsuf, childfood, childfood,
expns_dif, foodrsnrv4, expns_dif,
foodrsnrvl foodrsnrvi,
foodrsnrv4
XGB- 1.0 0.8166 curfoodsuf, ms, childfood,
SHAP agenid_birth, expns_dif,
genid_describe, foodrsnrv4,
sexual_orientation foodrsnrvl
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performance (1.0 for CV10, 0.7919 for CV9).

In contrast, as shifted variables with bold fonts, supervised models
like RF, XGB, and their SHAP variants achieved higher accuracy but
demonstrated considerable instability in feature rankings. XGB and
XGB-SHAP, while attaining perfect accuracy in CV10 and the highest
CV9 accuracy (0.8166), showed dramatic shifts in important features
after removing the top predictor. RF and RF-SHAP models exhibited the
same pattern of ranking instability despite their high accuracy. Partic-
ularly revealing is how XGB models identified entirely different feature
sets (focused on demographic characteristics like 'ms', 'agenid_birth')
compared to other models that prioritized direct food security
indicators.

These findings suggest that while supervised models may optimize
for prediction accuracy, unsupervised and correlation-based approaches
offer superior stability in feature identification—a critical consideration
for research applications where consistent feature importance is essen-
tial for establishing reliable associations.

4. Discussion

Our findings illuminate critical methodological concerns when
applying machine learning approaches to food security research. The
implementation of explain=SHAP(model) reveals a fundamental de-
pendency often overlooked in current research: SHAP inherently relies
on the underlying model it explains, thereby inheriting and potentially
amplifying any biases in feature importance rankings derived from that
model (Bilodeau et al., 2024; Hooshyar & Yang, 2024; Huang &
Marques-Silva, 2024; Kumar et al., 2021; Lones, 2024; Létoffé et al.,
2025; Molnar et al., 2022; Wu, 2025). This dependency undermines the
perception of SHAP as an objective explanation method, when it is more
accurately characterized as a reflection of the underlying model's biases
and limitations.

Our empirical analysis using the Ogundari (2023) dataset demon-
strates that supervised models—both with and without SHAP explan-
ations—produce inherently unstable feature importance rankings. When
the top feature is removed, these models dramatically reorganize their
feature hierarchies, suggesting they capture circumstantial correlations
rather than fundamental relationships. This instability persists regard-
less of high cross-validation accuracy, highlighting the dangerous
disconnect between predictive performance and explanatory reliability.

Due to the absence of methods for calculating true associations be-
tween variables, we advocate for multifaceted approaches combining
unsupervised machine learning models such as highly variable gene
selection (HVGS), followed by nonlinear nonparametric statistical
methods such as Spearman's correlation with p-values for monotonic
relationships. This multifaceted approach addresses the fundamental
limitations of single-method analyses that fail to capture the complex
realities of food security determinants.

Though originally developed for genomic research, HVGS offers
powerful applications in food security analysis by identifying features
with the highest variability across observations, effectively highlighting
factors demonstrating meaningful differences between food secure and
insecure populations. This technique prioritizes features based on
inherent variability rather than fit to a particular model structure,
making it less susceptible to model-specific biases.

Spearman's correlation provides robust assessments of monotonic
relationships without requiring restrictive assumptions of linearity or
normal distribution that plague conventional methods, making it ideally
suited for complex, nonlinear relationships in food security systems. As
our results demonstrate, unsupervised and correlation-based approaches
maintain substantially greater stability in feature rankings compared to
conventional supervised machine learning models. This stability is
crucial for policy-making because unstable rankings can lead to
dramatically different conclusions about intervention priorities
depending on model selection. Feature ranking stability testing through
our "leave-topl-out" approach provides a straightforward yet powerful
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validation method, revealing whether identified relationships are robust
or merely artifacts of particular model specifications.

Our study has several limitations that warrant consideration. While
we demonstrate the instability of supervised models and SHAP expla-
nations in feature importance rankings, we do not fully explore the
mathematical mechanisms behind this instability. Future research
should investigate the theoretical underpinnings of feature importance
instability across different model architectures. Our analysis uses a
single dataset, albeit a comprehensive one. The generalizability of our
findings should be tested across multiple food security datasets from
different regions and contexts to establish broader validity. Addition-
ally, while we explored several common machine learning approaches,
future work should expand to include other emerging methods such as
causal machine learning and structural equation modeling.

While we identify the limitations of current approaches, our pro-
posed multifaceted methodology requires further validation through
simulation studies with known ground-truth associations. Such studies
would provide clearer evidence of which methods most accurately
recover true feature relationships under different data conditions. The
practical implementation challenges of our proposed approach in
resource-constrained settings deserve attention. Future work should
develop simplified frameworks and accessible tools that enable food
security researchers and policymakers with varying technical back-
grounds to implement these more robust analytical approaches.

In conclusion, our findings call for a fundamental shift in how feature
importance is assessed in food security research—moving from over-
reliance on supervised models and their explanatory tools toward more
robust, multi-method approaches that emphasize stability and consis-
tency in feature identification. By implementing this comprehensive
methodology, researchers can develop more reliable insights into the
true determinants of food security, ultimately enabling more effective
and targeted interventions that address genuine causal factors rather
than statistical artifacts or model-dependent relationships.
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