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Traditionally, digital computers have been used to
handle repetitive and numerically intensive tasks. But Al
has created computers and software that are superior in
number crunching and efficient in symbolic manipula-
tions. Today, we associate the term Al with virtually
every facet of real-world problem solving in which com-
puters play a dominant role.

Careful analysis reveals that most so-called “intelli-
gent” machines or programs have one common trait —
they solve well-defined problems that usually can be
handled with reasoning techniques based on dual logic.
While this may prove adequate for many applications, a
class of problems exists that does not lend itself to rigor-
ous precision (a prerequisite for true-or-false reasoning).
These problems are humanistic or ill-structured in nature;
they represent problem domains that the human mind is
more capable of handling. We are no longer dealing with
true or false, but with the range between true and false.
From such realizations, fuzzy mathematics emerged.

When first introduced, fuzzy mathematics was re-
ceived with skepticism by experts accustomed to the
rigorous precision for which classical systems are known.
Despite their hesitation in adjusting to aspects of vague-
ness and imprecision, fuzzy logic has been successfully
established as an alternative approach to reasoning in the
Al community. In place of the rigorous precision for
which classical systems normally strive, fuzzy reasoning
is suitable for solving problems that involve vaguely
defined entities. This vagueness is evident in our every-
day use of such terms as “young,” “tall,” and “smart.”
Fuzzy sets can represent these vague concepts.

Overthe pastdecade, fuzzy-set theory has been applied
to solve real-world problems in such areas as control,
operations research, pattern and speech recognition,
expert systems, and linguistics; we find general surveys
of these widely ranging applications in Dubois and Prade,’
Negoita,”> and Zadeh.® While the success of these applica-
tions proves the viability of fuzzy-set theory in Al, the
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impact has not been as great as when expert systems
gained attention in the role of humanistic problem solvers
— a lessened impact, perhaps attributable to the lack of
tools for capitalizing on fuzzy thinking’s benefits. This
should motivate a software environment conducive to
developing fuzzy reasoning systems.

We will address the implementation of a fuzzy simula-
tor (FSIM) and architectures for a general-purpose VLSI
fuzzy-inference processor. The FSIM tool aids in the
rapid prototyping of a fuzzy production system (FPS), and
represents a convenient transitional medium towards the
implementation of an FPS on silicon.

Before any attempt is made to develop inference-
processing hardware for approximate reasoning, it is rea-
sonable to assume that at least a prototype has been
developed and verified to function according to specifica-
tions. For rule-based systems, the biggest problem is
integrating a rule set to form a coherent knowledge base.
This includes the subjective definition of fuzzy terms
used in these rules, and the use of proper inference
mechanisms for deriving conclusions. We will show how
to simplify these tedious and time-consuming tasks sig-
nificantly, using a tool to aid FPS development by simu-
lating the reasoning process. The simulator enables users
to explore the various inference mechanisms proposed by
fuzzy-logic researchers.

Essentially, the two areas where special-purpose hard-
ware can be useful are real-time computations and com-
pact (portable) computing machines. Real-time Al sys-
tems are not new. Many applications exist in which
decisions must be made in real time — closed-loop con-
trol systems, for example, where considerable data from
sensors must be processed before a decision can be made.
An expensive (and inefficient) alternative to real-time
computations would be to dedicate a powerful host to the
problem. Another possibility would be special add-on
hardware to accelerate CPU-intensive routines typical in
problems that can be solved algorithmically.

Application-specific hardware is also used to make
products small and portable — one reason behind applica-
tion-specific integrated circuit (ASIC) popularity. In the
near future, hand-held expert systems may be as common
as pocket calculators. We hope this article represents a
positive step in that direction.

Togai and Watanabe developed the first inference
engine based on fuzzy logic — their CMOS im-
plementation of a VLS] inference engine for approximate
reasoning.* They interpreted the conditional statement
“if X is A then Y is B” to be the relation R = A X B, which
Mamdani and Assilian used successfully in rule-based
control systems.> However, such an interpretation is not
always appropriate for modeling human reasoning.
The literature presents various interpretations of the
implicational relation.®

Togai and Watanabe’s inference chip implementation
shows that hardware complexity increases greatly if

another implicational relation is chosen. We will discuss
an alternative architecture for realizing the fuzzy-
inference engine in hardware — a processor architecture
conceived with the emphasis on generality (a particularly
useful factor for accommodating the many possible
inference methods in fuzzy reasoning).

We will present a brief theoretical review behind fuzzy
reasoning, introduce the FSIM, and discuss FPS develop-
ment using the FSIM. In describing our approach towards
realizing expert systems on silicon chips, we will provide
an overall picture of the various stages involved in devel-
oping a fuzzy-inference processor.

Next, we will outline the general architecture of a VLSI
inference processor for FPSs. To further illustrate the
development of a fuzzy inference processor, we will
describe an FPS example from conceptualization to
implementation on silicon chips.

Approximate reasoning

Fuzzy logic allows premises and conclusions to be
fuzzy propositions. We can express truth values of propo-
sitions as linguistic variables with varying degrees of
truth (including “true,” “more or less true,” and “very
true™). If expert system input is in linguistic form, trans-
lation transforms the input into fuzzy sets. We achieve the
reverse process, retranslation — that is, from fuzzy set to
linguistic form — by means of linguistic approximation.
Reasoning usually involves the handling of premises
represented as fuzzy sets. and normally produces fuzzy
sets as conclusions. To make sense of a deduced conclu-
sion, using linguistic approximation during retranslation
produces a final conclusion that is approximate rather
than exact.

We will reason with premises or propositions of the
form X is A” (forexample, “demand is high™). Four types
of translation rules exist for approximate reasoning.
Translation rules are a rule set used to associate fuzzy
premises with their corresponding possibility distribution
functions. The four types of translation rules are used for

)

(1) Modification,
(2) Composition,
(3) Quantification, and
(4) Qualification.

Particularly relevant in our discussions will be transla-
tion rules for modification and composition. Zadeh pro-
vides an exposition to the theory behind quantification
and qualification rules.’

Modification. Let X be a variable and A be a fuzzy
subset, both in the domain U. Consider the atomic
proposition P = “X is A”: The translation of P can be
written as

2
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P=m, =1, (v) (1)
where u is a generic element of the variable X, and =, is
the possibility distribution function characterized by p,
(the membership function of A). The translation of a
modified proposition P* = “X is mA™ where m is a fuzzy
modifier — or linguistic hedges such as “not,” “very,” and
“more or less” — is given by
P* = = u,.(u)

(2)
where A"= mA. However, suppose that m = not. If so, then

A= (1 - p)/u 3
where J denotes the union of fuzzy singletons. Some
examples of modifiers and mathematical definitions
commonly used are

m = “very,” A% = (w () u 4
m = “more or less,”  A* = [ V(u,(w)/u (5)
m = “plus,” A =T () (6)

Strictly speaking, we should view such mathematical
generalizations of linguistic hedges only as standard
default definitions, if no absolute definitions are supplied.

Composition. Translation rules pertaining to compo-
sition enable the translation of proposition R, which is a
composite of propositions P and Q. Basically, three modes
of composition are commonly employed — conjunction,
disjunction, and conditional composition. Rather than
providing absolute definitions of conjunctive and dis-
junctive operators, we will describe them mathematically
as follows:

conjunctive:
vV x,. x, € [0,1], C(x,» x,) £min (X, X,) (7)
disjunctive:
v X, X, € [0,1], D(x,, x,) 2 max (X, X,) 8)

Conditional composition, more commonly known as
implication, is important when representing domain
knowledge in rule-based systems. The conditional
proposition R = “if P then Q” will be symbolically
expressed as

R=P—=Q 9)
and is read as “A implies B” (we will present mathemati-
cal interpretations of the — operator in the next section,
and will describe the modus ponens rule of inference in
the fuzzy sense).

Generalized modus ponens. The basic constructs of
fuzzy reasoning are propositions or premises that have
implied fuzzy meaning. A fuzzy proposition is an asser-
tion about the value of a fuzzy variable. In general, each
fuzzy premise contains one or more clauses, and each
clause is an atomic proposition with an attribute, an
object, and a value. The object is usually associated with
an implied attribute and the value is represented as a fuzzy
subset. For example, “John is tall” is an assertion regard-
ing the height (attribute) of John (object) as being tall
(value = membership function tal/). Similarly, “the stock
market is bullish” can be decomposed into “Wall Street
marketindicator” (attribute), “stock market” (object), and
“bullish” (value) — realizing that more than one way
usually exists for interpreting each clause.

By applying the rules of inference in fuzzy logic, we
can deduce a proposition (conclusion) from a setof known
premises. A special case of the rule of inference exists
when

P="if X is A then Y is B”
Q="XisA”

R=“Yis B (10)

This is known as compositional modus ponens, and can
be expressed as

B’=A"°(A —B) (11)
where A — B is an implicational relation read as “A
implies B” and " is a fuzzy max-* composition operator
(read as max-star composition, where “*” is an operator
to be defined). We can view the above as a generalization
of modus ponens that reduces to classical modus ponens
when O =“X is A” and R =“Y is B” (A, A", B, and B’
are fuzzy concepts while X and Y are variables
representing objects).

In knowledge engineering terminology, we commonly
refer to a rule of the form “if <antecedent> then <conse-
quent>" as a production rule. For FPSs, a chain of rules
(also commonly referred to as fuzzy algorithms when
applied to a known fact or observation) will deduce the
conclusion after each pass through the rule set. Typically,
fuzzy productions are of the form

Rule 1: if X is A thenYis B,
Rule 2: else if X is A, then Y is B,
Rule n: else if X is A then Y is B, (12)

In contrast to a classical production system, all FPS
rules are considered to be fired (but with different
strength). Of course, rules that fire strongly will contrib-
ute significantly to the final conclusion. Since all rules are
said to contribute to the final conclusion, it makes sense
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Figure 1. The decision tree of a fuzzy
production system.

to include an additional operator that will aggregate con-
clusions deduced from each rule. To this end. the f
operator is introduced — which will be referred to as the
production link and is significant when determining how
concluded values are propagated after each rule is fired.

Given the FPS of Equation (12) above, we can con-
struct a decision tree of nodes and branches as shown in
Figure 1. To achieve the conclusion B’, given the fuzzy
input pattern A”, all nodes are triggered in a top-down and
left-right manner. Each node is triggered when the values
of branches (fuzzy premises) are known. In Figure 1, the
N1 node is first triggered, followed by N2. At this point,
the B,. branch would have been known. Node N3 cannot
be triggered yet, since the B,. branch is still unknown.
However, conditions are right for triggering N4 and (sub-
sequently) N5. Once the value for the B,, branch is known,
N3 will then be triggered. This process repeats until all
nodes have been triggered, thus producing the FPS
conclusion B”.

Clearly, three different operators have been identified:
implication, max-* composition, and the production link

[db da, m.ﬂn]

Figure 2. Max-min composition.

f.,.- Hereafter, uniess otherwise stated, we assume these
operations to be generic in nature (that is, representing
any of the different operations possible in the context of
approximate reasoning). In the discussions that follow,
we will describe the various possible interpretations of
these operators.

Fuzzy implication. Many studies have been done to
obtain a fuzzy operation for — of Equation (9) that fits the
context of the fuzzy conditional proposition. For a quali-
tative comparison on the different implications, see our
references.®*'¢

The — operator can be any of the 15 fuzzy
implications listed by Mizumoto and Zimmermann.® Let
A and B be fuzzy subsets in universes U and V,
respectively, as follows:
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A =[F W, B = [, (v (13)
and for simplicity, let
a=y,(w), b= .(v) (14)

Let N, U, =, X, and @ denote (respectively) the inter-
section, union, complement, Cartesian product, and
bounded sum operation. For example, consider A =0.5/1
+0.7/2 +1.0/3and B=0.4/3 +1.0/4 + 0.4/5, where “+”
signifies union rather than arithmetic sum. If the relation
R, is chosen for the conditional proposition “if X is A then
Y is B,” then

R =(AxB)U(=AXV)
=], (@aab) v -a)n/fuv)
=0.5/(1,3) + 0.5/(1,4) + 0.5/(1,5)
+0.4/2,3) + 0.7/(2,4)
+0.4/(2,5) + 0.4/(3,3) + 1.0/(3,4) + 0.4/(3,5)

5s)

Fuzzy max-* composition. The fuzzy conditional state-
ment “if X is A then Y is B” is said to be a causal link from
X to Y. In practice, all rules in a fuzzy production system
attempt to describe the causal link between X and Y as
thoroughly as possible.'' The atomic propositions “X is A”
and “Y is B” can be expressed as

T, = Ky (u) and T = (V) (16)

Here, n_and T, are possibility distribution functions re-
stricting the possible values of X and Y, respectively.

Given the proposition “X is A” and the reference
proposition “if X is A then Y is B,” we can deduce the
consequent“Yis B” by means of the compositional rule
of inference described in Equation (11). The max-* com-
position operator “°” in Equation (11) is also commonly
referred to as a detachment operator. The most frequently
used max-* compositional operator in practical applica-
tions of fuzzy logic is Zadeh’s max-min composition.?
Figure 2 illustrates the procedure for computing B’ by
max-min composition.

Other possible compositional operators have also been
suggested; for example, max-© composition and max-A
composition. The operators ©® and A — introduced by
Dubois and Prade' — are referred to as bounded-product
and drastic-product, respectively, in Mizumoto.® They are
defined as follows:

V x,.%, € [0,1], x1®x2=0v(x|+x2—l) an

and

V X%, € [0,1], X,

The production link. Production system rules are

chained together in either a causal or noncausal manner.
Causally chained rules usually signify the dependence of
arule on a previously fired rule. In contrast, two rules are
said to be noncausal if the firing of one rule is not affected
by the other; that is, noncausal rules are independent of
one another and each fires autonomously. In the FSIM, the
rules of Equation (12) can be considered as knowledge
chunks with the distinction that they all have the common
right-hand side (RHS) object-attribute Y. Rules within a
knowledge chunk must be noncausal. On the other hand,
two knowledge chunks can be causal. The order in which
causal chunks of knowledge are specified is important;
that is, rules for deducing attribute values that other
knowledge chunks will use must be specified first.

Let’s examine three possibilities of f,, fuzzy operation
to model the “else” connective in the FPS of Equation (12)
(the possibilities of suitable aggregation operators are
certainly not limited to the three described below; other
suitable operators can be introduced to better model
human decision making, as Zimmermann and Zysno have
demonstrated):'*'

(1) The or-link (f ) — In classical production sys-
tems, where premises are not fuzzy, a rule is said to be
fired if an input pattern exactly matches the pattern on a
rule’s left-hand side (LHS). In contrast, all rules are
considered to be fired (but with different strength) in
FPSs. As such, the final deduced conclusion is said to be
a contribution of all these rules. The simplest mathemati-
cal operation for realizing the “Or” aggregation is by
means of the max operation. The or-link tends to have a
monotonic effect on reasoning. In a different perspective,
we can consider rules that are “Or” aggregated as gener-
alized monotonic reasoning, since all deduced conclu-
sions hold true (but to various extents) throughout reason-
ing. A concluded value is either true or false for monoton-
icity in classical knowledge-based systems. Usually,
premises concluded from weakly fired rules tend to have
little or no effect on the end result. Many authors
(Mamdani and Assilian, for example®) have used]‘mas the
production link in their applications.

(2) The and-link (fa”d) — Instead of the or-link, con-
clusions from all FPS rules can be aggregated using the
and-link. The simplest mathematical operation for realiz-
ing the “And” aggregation is by means of the min opera-
tion. Dubois and Prade'' suggest using the fuzzy min
operation to aggregate the result in an FPS, particularly
when — is derived from Lukasiewicz’s implicational
logic (as explained by Rescher),'® which corresponds to
the relation of Equation (15). Another possibility for
using f . (or f ) would be to divide a single rule into
multiple rules — particularly necessary when a rule’s
antecedent contains too many preconditions or clauses to
be specified in a single rule.

(3) Truth-qualification (f) — A deduced conclusion
can have an associated truth or confidence level, if
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necessary. Referring to equation (11), the truth level of
the deduced premise “Y is B”” can be defined as the ratio
Ty s expressed as follows:

1,.= Z-count(B")/Z-count(B) 19
where

S-count(B") = Tty (v), VveV (20)
and

Z-count(B) = Jp,(v), VveV 21

A necessary precondition for Equation (19) to apply is
that the conclusion B” must be a subset of B. Let T denote
the value of 7., due to the ith rule in Equation (12). Then,
in general, the greatest value of T denoted by T’ can be
written as

T'=Vv1

i

fori=1,..n (22)

where v denotes the max operation. If ©° = 1, the final
conclusion B” will be equal to B, — meaning that deduced
attribute’s value is the translation of the premise with the
highest truth level. This operation resembles classical
rule-based systems in which only one rule contributes to
the final conclusion.

Briefly stated, the selected f,, operation depends pri-
marily on the context in which rules are written. Other
possible connectives can be derived to suit the knowledge
source’s semantics requirement. To suit the problem
domain, however, it is sometimes necessary to provide a
different interpretation of the f,, operator. While this may
add to inference procedure complexity, it could prove in-
dispensable for applications in which human decision
making capabilities must be better modeled.

Simulation with the FSIM

Reasoning with concepts involving fuzzy sets requires
more sophisticated matching and rule-firing mechanisms
than those offered by conventional two-valued proposi-
tional logic. We can broadly classify steps involved in
FSIM simulation as follows:

(1) Specify fuzzy production rules,

(2) Define fuzzy terms as possibility distributions,

(3) Parse the rules,

(4) Convert rules into symbolic representations,

(5) Choose the appropriate inference mechanism,
and

(6) Simulate with test cases; if unsatisfactory, go
back to steps (1) or (2).

A brief outline follows of the FSIM’s role in the
development of fuzzy production systems. Lim provides
further details.’®

36

The input syntax. Input to the FSIM is specified as a
chain of rules (rulel, else rule2, else ..., else ruleN) in
which each rule contains the LHS clause(s) referred to as
antecedent and the RHS clause for the consequent. Each
rule’s LHS comprises one or more clauses, whereas the
RHS supports one clause consequent. Limiting the RHS
to a single clause does not restrict the system in any way,
since a consequent with multiple clauses can usually be
decomposed into separate knowledge chunks. Multiple
clauses on the LHS are linked together by logical connec-
tives (LC = {and, or}). In general, each rule is represented
as follows:

If

<antecedent_clause_1>
LC <antecedent_clause_2>
LC <antecedent_clause_n>
Then

<consequent>

All clauses are enclosed within < and > symbols, and
each clause is of the form “$X is attribute.” The $ symbol
is used to denote the presence of an object that is analo-
gous to a variable in mathematical equations. Hence, we
can view tokens preceded by a $ symbol as fuzzy vari-
ables. Reserved words with special meanings cannot be
used to name variables or attributes; “if,” “then,” “else,”
“and,” “or” — and other predefined fuzzy modifiers
(linguistic hedges) including “not,” “very,” and “most.”
Users can override built-in definitions and define new
fuzzy modifiers and connectives by preceding the in-
tended word with a ~ symbol. For example, “~very” and
“~anyword” will cause the program to search for func-
tions in the FSIM’s user-defined library. Each clause’s
attribute can be complex; for example,

P = “not very young and not ~too old”

The convention for specifying compound attributes is
“operator (operandl, operand2).” A proposition of the
form “the man is P”” would be specified as “$the_man is
and(not very young, not ~too old).”

We developed the FSIM’s parser with help from YACC
(yet another compiler compiler), a program that generates
parsers. YACC is available as part of the Unix operating
system’s software distribution. The FSIM’s parser func-
tions are threefold:

(1) To detect syntactical errors in input;

(2) To extract the list of token names that are vari-
ables or attributes that users must define before infer-
ence can proceed; and

(3) To convert high-level user representation of
fuzzy production rules into the FSIM symbolic format
used to drive inferencing.

IEEE EXPERT
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(or more) contradic-

To present the Table 1. Input text for YACC.
FSIM’s overall syntax /* Producti | R
structure, Table 1 outoken roduction rules parser */
shows the YACC’s | |p)g THEN ELSE F_MODIFIER F_VAR F_LABEL LOGICAL
input description. Suc- %l
cessful rule parsing extern main(), yylex(), yyerror();
will produce three disk :M
files — a symbolic rep- 4:5/?“ rule_base
resentation of the rules, rule_base
a list of fuzzy attri- } tule
butes, and a list of input | rule ELSE rule
variables. ;

rule : IF antecedent THEN action

Symbolic repre- antecedent clause
sentation. In high- | antecedent LOGICAL clause
level programming lan- H
guages, we use compil- action clause
ers to convert high- clause ‘<’ F_VAR IS attribute ‘>’
level code to lower .
level representations attribute ’ argument
(and, eventually, into 1 LOGICAL ‘(’ attribute ‘,’ attribute ‘)’
machine executable aroument H E LABEL
codes). Symbolic rep- ’ I LOGICAL *(’ argument *,” argument °)’
resentation of fuzzy I F_MODIFIER argument
production rules in the ;

FSIM is analogous to a %%

tory rules. Incorrect or
ambiguous results can
usually be remedied by
changing rules or add-
ing new rules. Fre-
quently, the system
dictionary must be
changed to further re-
fine the fuzzy produc-
tion system’s overall
performance. Adjust-
ing the knowledge
base is called “tuning.”
We implemented the
features to facilitate
tuning in the FSIM’s
simulation environ-
ment, using the C-Lan-
guage built-in utility.

Users must be able
to monitor intermedi-
ate results selectively
during inferencing. By
tracing through inter-
mediate inferencing

compiled program’s
machine code; that is,
the symbolic form is an FSIM-executable representation.
Actually, itdescribes an FPS’s decision tree structure. We
can consider each pass through the FPS as a top-down
search of the decision tree.

The decision tree’s nodes are associated to fuzzy op-
erations, and the branches to fuzzy sets are characterized
by the grade-of-membership functions. Two types of
branch exist — terminals and nonterminals. Each branch
is directed either inward or outward with respect to
a node. Except for variables whose values result from
inferencing, terminal branches are subjectively pre-
defined object classes characterized by their grade-of-
membership functions. Nonterminals are intermediate
results during inference.

Like branches, there are also two types of nodes —
uninodes and binodes. Uninodes have only two branches
associated with them, one going inward and the other
outward. Typically, uninodes represent operations caused
by the use of fuzzy modifiers such as “not,” “very,” and
“most” in the rules. Binodes have three branches associ-
ated with them. Each binode has two branches going
inward and one outward. A node is said to be triggered if
the value(s) of the branch(es) going inward is known.

The user interface. Prototypical systems are subject
to constant modification during development. Rules are
changed until a coherent knowledge base is achieved. A
coherent knowledge base consists of arule set with no two
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stages, users can pin-
point weak or contra-
dictory rules. The FSIM provides a graphical display to
help users perform such tracing. By selectively stopping
inference at various stages, users can examine the current
memory state by specifying tokens associated with a
fuzzy subset that will be plotted on the graphical display
window. This feature aids in debugging the knowledge
base and is especially useful during FPS development.

The natural language interface module, an additional
user interface component, is helpful when developing
FPSs. Since fuzzy reasoning involves using linguistic
labels, it is generally more convenient for users to specify
input in linguistic form. Linguistic input must then be
converted to equivalent fuzzy sets, based on a set of
predefined fuzzy terms. The FSIM incorporates such a
capability, as well as the capability to accept fuzzy sets as
input. The latter is necessary because in some applications
— due to the nature of input sources (sensors, gauges, and
meters, for example) — it is more convenient for input to
be in the form of fuzzy sets. This is especially true in many
rule-based control systems.

Conclusions deduced from fuzzy systems are usually
formed as fuzzy sets. To assess system outcome effec-
tively, resultant fuzzy sets must be translated into seman-
tically equivalent language expressions comprehensible
to humans. This is known as linguistic approximation,
which various authors (Schmucker,'” for example, and
Degani and Bortolan'®) have addressed both as a general
problem and in the context of particular applications.
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Eshragh and Mamdani,'” and Wenstop® Knowledge representation. Assum-
have discussed the more general problem, ing an application requires that an FPS be
in which only one fuzzy subset will be implemented in VLSI circuitry — and
translated into words. At present, no H bearing in mind that we should avoid
general linguistic-approximation routine . secondary memory storage (including
has been implemented for the FSIM. * hard disks) for performance considera-

(4,6) 1.0 tions — how should we represent the
From FSIM to silicon chips (3.6) 0 knowledge base in a format useable by a

' fuzzy-inference processor?

When developing a reasoning system, 2,6) 0 Let’s examine the methodology in-
one of the main tasks involves formulat- (1,6) 1.0 volved in mapping fuzzy production
ing the knowledge base itself. Once rules into binary matrices. The context in
knowledge has been captured, the system (4,5) 0.8 which we use the term “knowledge repre-
usually undergoes stages of refinement (3,5) 0 sentation” refers to the method of repre-
and modification until a workable system senting the knowledge base in memory
is achieved. When the system functions 2,5 0 elements — random-access memory
consistently as desired. its knowledge (1,5) 0.9 (RAM), for example, or read-only mem-
base becomes a static data structure unless ory (ROM).
the system has learning capabilities. The 4,9 0.5 An obvious hardware equivalent of
knowledge base remains unchanged until 3,9 the fuzzy conditional proposition “if X is
the system undergoes further modifica- (2,4 0 A, then Y is B” will consist of memory
tions (usually to improve system perform- ! storage for fuzzy concepts A and B, and a
ance and reliability as more experience 1,9 0.8 hardware block to compute the implica-
and understanding are gained regarding (4.3) 0.2 tional relation matrix. In Togai and
the system’s reasoning behavior under ! Watanabe’s implementation of a VLSI
normal operations). In fact, what we have (3,3) 0 fuzzy inference engine, the following
stated so far represents the prime motiva- 2,3) 0 implicational relation was assumed:*
tion for a knowledge-based approach to
solving domain-specific problems in the 0.3 0.6 R, ;= min (4, (u), L(v))/(u, v) (23)
first place. By separating domain knowl- (4,2) 0
edge, we can easily upgrade sophisticated This instance computes the implica-
programs by independently modifying the (3.2) 0 tional relation by means of a simple min
knowledge base. 2,2) 0 hardware module. However, as described

Since knowledge-based system per- (1,2) 0 earlier, such an implicational relation is
formance expectations in certain applica- not always appropriate for modeling
tions have begun to exceed the limit 4,1) 0 human-like reasoning. From a hardware
achievable by programs running on gen- (3,1) 0 implementation viewpoint, a problem
eral-purpose hosts, researchers are look- @n p arises because — can be any of the many
ing into parallel computing architecture ’ possible implicational relations de-
and special-purpose hardware to address (1,1 0 scribed. In other words, we must design
the problem. The latter has been a popular special hardware for each of the 15 rela-
approach, as the recent surge in the ASIC

market indicates. Two approaches exist for
developing application-specific hardware
— using customized ASIC chips, or using
standard off-the-shelf chips. When faced
with demanding performance expecta-
tions, the second option may not be feasible; custom VLSI
chip performance is far better than that of standard off-
the-shelf parts, since a circuit board’s electrical parame-
ters differ greatly from those of a silicon die. Furthermore,
from the standpoint of development time, the prototyping
of VLSI chips has reached a stage comparable to using
standard off-the-shelf chips — due mainly to advanced
state-of-the-art semiconductor processing technology and
efficient CAD tools for rapid chip prototyping.

Figure 3. The impli-
cational relation
matrix in a mem-

ory element.

tions outlined by Mizumoto and Zimmer-
mann.® While feasible for certain implica-
tional relations, it can be difficult and ex-
pensive to design special hardware for
some relations — especially those involv-
ing multiplication and division. More-
over, as implicational relation block complexity in-
creases, the hardware system’s overall control strategy
becomes more complicated.

An alternative approach would store the precomputed
“A — B relation matrix directly into the processor’s main
memory, greatly reducing hardware complexity and sim-
plifying the inference engine’s control strategy. For ex-
ample, let A and B be fuzzy subsets of the universe U= {1,
2,3,4)and V=1{1,2,3,4,5, 6}, respectively.

38

IEEE EXPERT



If

A=05/1+1.0/4 (24)
B=0.2/3+0.5/4+0.8/5+ 1.0/6 (25)
and we take R, ,, to be the relation of equation (23), then

R, ., =02/(1.3) +0.2/(4,3) + 0.5/(1,4) + 0.5/(4,4)

+0.5/(1,5) + 0.8/(4,5) + 0.5/(1,6) + 1.0/(4,6) (26)
Similarly, if the R* relation is chosen,

R*¥*=(Ax V)* = (UxB)

=],y (1-a+ab)(u, v) 27)

where a and b are as defined in equation (14), then

R, ;= 0.6/(1,3) + 0.2/(4,3) + 0.8/(1,4) + 0.5/(4,4)
+0.9/(1,5) + 0.8/(4,5) + 1.0/(1,6) + 1.0/(4,6) (28)

Figure 3 shows how the R, ,, matrix of equation (28)
can be stored directly into memory as knowledge to be
used for reasoning. In equations (23) and (27), (u,v) are
mapped onto hardware as the memory address of implica-
tional matrix values in memory storage elements.

The overall approach. The three major stages of FPS
implementation are problem conceptualization, working
prototype, and inference processing hardware. Figure 4
overviews the development of an FPS on silicon; the
prototypical system is developed by means of the FSIM.
Once the system’s functionality has been verified, we can
convert the knowledge base into relational matrices suit-
able for binary representation in the hardware engine’s
main memory. The “dump” command accommodates this
feature in the FSIM, creating a disk file with arrays of
values corresponding to implicational relation matrices.
For each relation matrix, a two-dimensional array of
grade-of-membership values is created. These values are
then loaded into the inference processor’s main memory
from a general-purpose host machine. For example, on
Sun workstations, we can program the inference proces-
sor’s main memory by configuring it as a multibus board
inserted into the card cage. We can then use software rou-
tines to access specific board memory locations for read
or write operations. Borriello et al. provide an example of
user-level C routines for this purpose.”

Clearly, the host computer is crucial during develop-
mental stages only and does not remain a permanent
fixture of the hardware engine. Once the knowledge base
has been loaded, the hardware engine can function as an
autonomous reasoning system provided that the proper
peripherals for interfacing with external I/O devices are
available. If we do not expect the knowledge base to
change, we can use a more permanent form of memory

Application
Problem
Definition
Knowledge Capture
and Representation

Test

Cases Inference

Verification

v

Hardware
Design

Test
Patterns

Functional
Hardware

-ama: = F§IM environment

Figure 4. Stages of FPS development.

storage. For example, we can use ROM to encode knowl-
edge for the processor once the knowledge base is fixed.
Even then, we can accommodate further knowledge base
changes by replacing the ROM chip. Besides making the
reasoning engine small and portable, such architectural
flexibility makes it suitable for certain applications in
which the expert knowledge of different human experts
can be made easily available in the form of encoded
memory chips.

VLSI inference processor architecture

We can separate inference processor design into four
basic functional blocks — the knowledge base (main
memory), the control engine, the composition engine, and
the aggregation engine. Figure 5 shows the overall archi-
tecture. In addition to these four functional blocks are two
register arrays. Register array A stores external fuzzy
input values. Register array B stores intermediate results
of computation.
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Figure 5. The overall system architecture of a

fuzzy inference processor.

The reasoning engine’s hardware architecture is suit-
able for use in a master/slave configuration with an
external device including a host or other application-
dependent 1/O devices.

The knowledge base (main memory). For the archi-
tecture being described, the knowledge base resides in
main memory to minimize [/O overhead. A general-
purpose host machine computes fuzzy implicational rela-
tion matrices, which are then loaded into the inference
processor’s main memory. This minimizes hardware
complexity by eliminating the on-chip computation re-
quired for implicational relation matrices. In addition,
processor flexibility is evident since the hardware is
independent of the implicational relation chosen for the
reasoning system. Such generality allows more compli-
cated inference mechanisms to be used without incurring
additional expense for hardware.

The control engine. One of the controller’s main
functions is to generate the address for accessing the
knowledge base in main memory. In addition, it synchro-
nizes the processor’s overall operation. The key behind

Figure 6. The composition
engine’s data path.

the system’s basic control strategy lies in the control en-
gine’s three count status blocks: U-count, V-count, and
rule-count. Rule-count is incremented after each rule has
been processed. V-count is incremented after each col-
umn of the relation matrix has been processed (see Figure
2). and resets after each matrix has been totally processed.
U-count addresses input from register array A. It resets
when all elements in the A’ matrix and a column of the im-
plication matrix in Figure 2 have been processed. As we
will examine later, the control engine’s main components
are synchronous counters.

The controller also generates signals to control proper
operational sequencing among modules. Each time a col-
umn of elements in the relation matrix has been processed,
the aggregation engine is activated. When activated, the
aggregation engine updates the contents of register array
B (which contains the concluded fuzzy attribute’s current
values). After each complete pass through the FPS, the
system can use a control flag to signal any external device
that data in register array B is currently valid (that is, that
the final concluded value has been attained). Register
array A stores externally loaded fuzzy-input patterns. All
other operations are suspended while register array A is
being loaded with external input.
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The composition engine.

Table 2. Rules for FXLoan.

The design example

The composition engine takes
input from register array A and
the main memory (A — B) and
produces the outcome B’, which
is stored in register array B.
Max-min composition has been
the most common detachment
operator used in fuzzy-logic ap-
plications. Other detachment
operators are max-A and max-© | eise
(described earlier). Figure 6 if

shows the data path for realizing
the composition engine. Infer-
encing is seldom affected by the

. S S S S

=

and
and
then

and
or
then

$cscore = critical score.
$cratio = critical ratio.
$ceredit = critical credit

<$cscore is high>
<$cratio is good_cr>
<$ceredit is good_cc>
<$decision is approve>

<$cscore is low>

<$cratio is bad_cr>
<$ccredit is bad_cc>
<$decision is disapprove>

We have described an overall
approach for developing FPSs. To
further clarify this approach, we
will examine a case study from
the problem specification to the
inference processor’s hardware
implementation. This example in-
volves developing an expert sys-
tem — which we’ll call FXLoan
(fuzzy X loan) — for processing
bank loan applications. A non-
fuzzy version of a system called
XLoan has already been devel-

composition operator chosen. In
most cases, max-min composi-
tion seems sufficient to model the composition modus
ponens of equation (11). The value dj (see Figure 2), the
maximum of all values in the jth column of the ¢ matrix,
will be stored in the register (see Figure 6). At this point,
the aggregation engine updates the deduced conclusion.

The aggregation engine. The production rules repre-
sented as relational matrices in memory are constrained to
be of single-clause antecedent and single-clause conse-
quent. Rules with compound antecedents (that is, multiple
clauses with “and” or “or” connectives) can be decom-
posed into multiple rules by using the appropriate f,
production link. We assume that all fuzzy sets represent-
ing the antecedent are characterized by grade-of-member-
ship values spanning the universe of discourse of the same
size, which reduces the control unit’s hardware complex-
ity significantly.

We have described three different operators to inter-
pret the “else” connective in a fuzzy production system.
Except for the f, operation, the other two corresponding
1., operators can be realized easily. The basic building
blocks of the aggregation engine in its simplest form
consist of a min module for f,  and a max module for f, .
Other aggregation operators to model the FPS’s “else”
connective can be implemented, if necessary. To realize
the f, operator, for example, the overall system will
require more complicated control strategy since division
of two binary numbers is involved. Accurate division is
not necessary, because membership values have been
“discretized” into levels; a pseudodivider can be imple-
mented with the use of an adder, a register, a synchronous
counter, and a magnitude comparator. Alternatively, a
table-lookup method (via a programmable-array-logic
module) can be used as a divider for two binary numbers.
Division using programmable array logic requires only
one clock cycle. Besides being faster, PAL can reduce the
complexity of overall control strategy. Its main disadvan-
tage is its size, which increases as “discretized” levels
of membership values increase in number.

oped. First, we will explore the

problem domain briefly. Then, we
will demonstrate the inference processor’s design. Step-
by-step coverage of FXLoan’s implementation will link
all the steps and procedures outlined earlier.

This example represents a simplified version of an
actual system. We will show only the portion of the
system that actually reasons. A more involved FXLoan
would require an elaborate user interface just for data
acquisition. Practically speaking, this exercise’s final
outcome will be fuzzy-inference processing hardware
that is programmable with domain knowledge. A
promising applicational aspect of the inference processor
will be its suitability for developing a small and portable
(hand-held) FXLoan.

The knowledge base. Financial institutions process
many loan applications every day, and interest charges
represent a major source of their income. Loan officers —
who assess most loan applications — gather information
regarding income, credit history, age, and assets that indi-
cate a loan applicant’s creditworthiness. Loan officers de-
termine whether or not to approve loan applications,
based on collected data, preconceived guidelines, and
experience; they usually arrive at their decisions via a
pencil-and-paper approach.

XLoan’s domain knowledge was acquired through
interviews with a bank loan officer. This expert’s factual
and heuristic knowledge was represented as production
rules. From user input — age, assets owned, credit his-
tory, employment, and so forth — XLoan concludes
whether or not to approve loan applications.

FXLoan’s knowledge base consists of two fuzzy pro-
duction rules (see Table 2). The knowledge base contains
three fuzzy input variables — S$cscore, $cratio, and
$ccredit. When the values of these variables are provided
as input, FXLoan will deduce a conclusion that is the
value of the variable $decision. XLoan contains 21 rules
to account for each possible combination of the
observables critical score, critical ratio, and critical
credit — typical of exact reasoning methodology. Since

FEBRUARY 1990

41




the comparable
version of FXLoan
requires only two
rules, FXLoan ap-
proximates the
heuristic approach
that humans use in
reasoning.

The FSIM’s
simulation. Once
we have defined
fuzzy production
rules, the next step
is to simulate the
system’s reason-
ing behavior, us-
ing the FSIM.
First, rules are
parsed to check for
syntactical errors.
After successful
parsing, three ad-
ditional files are
produced. One file
contains the sym-

$decision

Figure 7. FXLoan’s decision tree.

Table 3. A dictionary file for FXLoan.

bolic representa-
tion, which de-
scribes the deci-
sion tree. The
other two files
contain listings of
fuzzy labels and
input variables
used in the rules.
Figure 7 shows
the correspond-
ing decision tree
for FXLoan. Lim
provides further
details on the pro-
cedures involved
in  simulating
FXLoan.'

The diction-
ary, an additional
support file nec-
essary for the
FPS, contains
user-supplied
definitions on
label meanings in

: Definition of fuzzy terms used in FXLoan.

# Universe to define acceptability of $cscore.

# Elements:
#h‘ " 150 155 16?1 170 175 180 185 190 195 200
~hig ‘
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 1.0
~low 11
' 1.0 1.0 0.8 0.5 0.2 0.0 0.0 0.0 0.0 0.0
# Universe to define acceptability of $ccredit.
# Elements:
# 0 2 3 4 5 6 7 8 10
~good_cc 11
1.0 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
~bad_cc 11
' 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 1.0 1.0
# Universe to define acceptability of $cratio. ‘
# Elements: : i
# 01 0.3 0.4 0.41 0.42 0.43 - 0.44 0.45 0.5 0.7 1.0 |
~good_cr 11
1.0 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
~bad_cr 11 - )
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 1.0
# |
# Universe to define $decision. }
# Elements:
# 0 2 3 4 5 6 @ 7 8 10
~approve 1k
: 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 1.0 1.0
~disapprove 1
1.0 1.0 1.0 0.7 0.3 0.0 - 0.0 0.0 0.0 0.0 0.0
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Table 4. Implicational relation matrices for FXLoan.

coocoooooooo
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coocomoooooo
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ok d b bk - DO DO O b bk wh d d b b
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-k b b b b G D D D [ - N~ I YL Qi S G G g gy
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P Y Y — R — X —)
coocoocoooooe obooooooooo ocboooooooDo
oD LODOD DO CODDODODODD

Y - X - - L L I L - )
NNNNNNOOOD® ~NNNNNuUNoOOoOoo oo NN~NNN~Na~N~

cocoboboooon coooobooLmooo
coocoocooDoooD oo OoOCooD
CODOOONODED ODEODOO-NO0s

e Y XK X-X-X-]
S~ -ocooo
e e - -X-K-X-]
s sl sl sl
e e e XX

0.3 0.0 0.0 0.0
0.3 8.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0 (high -> approve)
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0
1.0 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0 (good_cr -> approve)
0.3 0.0 0.0 8.0
0.3 0.0 8.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 8.0 0.0
0.3 0.0 0.0 0.0
0.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0
1.0 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.8 (good_cc -> approve)
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0
0.3 0.0 0.0 0.0

terms of fuzzy sets (see Table 3). Based on the rules
specified, we evaluated various inference mechanisms to
determine the suitability of each inference method. By
providing various test cases and observing the FSIM’s
deduced conclusions, we found a few fuzzy implicational
relations to be suitable — R, R . R _.R , and R .° The
system determines each relation’s suitability by assessing
the conclusion deduced from test cases and then visually
approximating the fuzzy set into linguistic form. There-
fore, evaluating each inference method is highly subjec-
tive. Experience gained from various trials of the infer-
ence mechanisms strongly suggests that the context in
which rules are specified greatly influences the choice of
the implication relation.

Once we have chosen the proper inference mechanism
and exercised the knowledge base enough to verify its
functionality, the next step is to convert fuzzy production
rules into implicational relation matrices suitable for
representation in the fuzzy-inference processor’s main
memory. We accomplish this via the “dump” command in
the FSIM, which outputs implicational matrices on a disk

file. Table 4 shows the first three of the six implicational
matrices for the R  relation. These matrices are th=n
loaded into the inference processor’s main memory.

Hardware implementation. FX1.oan’s hardware im-
plementation (simplified in this example) is small enough
that we can realize the system without much difficulty
using standard off-the-shelf SSI and MSI chips. Implic-
itly, the ultimate target will be to realize the processor
using VL.SI technology for maximum performance.

As far as inference processing hardware design is con-
cerned, the system can be treated as if it were a six-rule
FPS. Table 3 defines fuzzy labels such that all universe
sets contain the same number of elements. Each universe
has 11 members. This simplifies the design significantly
by eliminating the need for additional counters and a more
complicated control strategy (if the universe of discourse
were chosen to be of a different size). The grade-of-
membership values are “discretized” to 11 levels (0, 0.1,
..., 1.0). Therefore, we need a 4-bit binary number (0000,
s «+.» 1010,) to represent the grade-of-membership values.
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Figure 8 shows described earlier
the overall system can be imple-
design that we can —c Sta}llogdlfﬁrl) mented using 4-bit
realize using stan- _ = synchronous
dard off-the-shelf " counters.
chips. We can real- Memory Address §\ [ A->B The counter for
. . EUERRNTERUUETUORONNN
ize register arrays ClR N rule-count resets
for the processor LG_ A at 0110, (the

. E register 1
by mezfi.r;s of rehgls— o 3 N [l L iNeN modulo-56
ter ile  chips L i counter). U-count
H H RO
(74870). We chose aoit LY acpic] = a-bit and V-count are
max-min composi- counter counter Counter l f used for indexing
tion in this design. R 1 ] I X A 4 the two-dimen-
The shift register seld:cifor St sional implica-
selects the appro- — (M) tional relation ma-
priate operational START!~ <1 : trices, which reset
mode for the mag- ) 8 ? at 1011, (the mod-
, " v vy :

nitude comparator 1 ! y : ulo-11 counter).

(0 formin and | for ; ! deta C";rar?;‘;ﬁ:fzr Each counter
max) in the aggre- 0 setector (MAX) will  output a
gation engine. Af- : 0 ripple carry output
ter each rule has 6] 1 register (RCO) bit when-
been processed, T ever the maximum
the shift register N countisreached. In
is shifted. The ‘ addition to the
VALID line is for register ; A 4 + three counters, a
external handshak- file date | ] megnitude 10-bit  counter
ing, and is asserted selector comperator (realized by cas-
when the final FPS L cading three 4-bit
rule is being proc- synchronous
essed. This signi- ~——— data bus counters together)
fies that processor conc1Vion T Z:?\::zls ‘b,:z is needed to gener-

. i
output is currently vaLo ate the RAM ad-

valid (that is, that
the final conclu-
sion is being de-
duced). The INEN operation (input enable) suspends all
other operations, and loads the register file with external
input (X is A").

Memory size. Since the system contains six rules, six
implicational relation matrices must be stored in main
memory. Each relation matrix consists of an 11-by-11
array of membership values. Therefore, the total number
of memory bits required for each rule willbe 121 x4 =484
bits. For six rules, the total memory required will be
726 x 4 =2904 bits. The proper choice in this design will
use a 1024 x 4 static RAM to store knowledge. Matrix
values (see Table 4) to be stored in memory are computed
while in the FSIM and loaded into RAM from the host.

Control. The control unit represents the implementa-
tion’s most complicated part. The control engine’s main
functions are to coordinate the proper operational se-
quence and to generate the memory address for accessing
RAM during inferencing. The three count status blocks

Figure 8. FXLoan’s hardware design.

dress. The RAM
address generator
resets when the
RCO bits of all three status counters are set, which
signifies that the maximum count (726) has been reached.

I ncorporating reasoning systems on hardware is signifi-
cant because future expert systems may have to make
decisions in real time. This approach may prove indispen-
sable in the near future, when sophisticated expert sys-
tems the size of pocket calculators become available.

We have presented a step-by-step approach towards
realizing fuzzy expert systems in VLSI circuitry. Devel-
oping reasoning system hardware for an FPS consists of
two stages. The initial stage specifies the algorithm in the
form of fuzzy production rules. The algorithm is exer-
cised and its functionality verified with the FSIM, a
simulator for the FPS. Once the algorithm is deemed
functional, the second stage designs special-purpose hard-
ware to realize the system. Rules are converted to fuzzy
relational matrices that can be programmed onto memory
chips for use as knowledge during inferencing.

|
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In addition, we have outlined a general block architec-
ture for realizing the approximate reasoning processor.
More importantly, we have shown that the reasoning
system’s knowledge base is easily reprogrammable and
independent of the fuzzy implicational relation’s inter-
pretation used for inferencing. This is an extremely useful
feature for accommodating reasoning systems in which
the knowledge base is constantly changing, and enables a
knowledge source to be made available as a plug-in
module in future systems.
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