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SUMMARY

A near-optimum parallel algorithm for solving the

one-dimensional gate assignment problem is presented in

this paper, where the problem is NP-hard and one of the

most fundamental layout problems in VLSI design. The

proposed system is composed of n u n processing elements

based on the artificial two-dimensional maximum neural

network for (n + 2)-gate assignment problems. Our algo-

rithm has discovered improved solutions in the benchmark

problems compared with the best existing algorithms. The

proposed approach is applicable to other VLSI layout prob-

lems such as th PLA (Programmable Logic Array) folding

problem. © 1999 Scripta Technica, Electr Eng Jpn, 129(2):

71�77, 1999
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1. Introduction

As a result of reducing development time, diversify-

ing features, and increasing integration in recent integrated

circuits, VLSI layout design has reached the limit of what

can be done by people. Design support using computers,

that is to say, CAD, has become essential for VLSI design

due to this situation. In particular, the majority of optimum

layout designs for VLSI involves problems of optimization

for combinations that are NP-complete or NP-hard [1],

because as the number of elements and number of wires

increase, the number of combinations rises dramatically.

Therefore, using CAD avoids this combinatorial explosion,

and the introduction of a method to find optimum or near-

optimum solutions efficiently is vital.

Hopfield and Tank [2] proposed an interconnecting

neural network, the first to use sigmoid-type neurons, as a

method to resolve the problem of optimizing combinations.

Since then, many researchers have attempted to improve

this method, and have applied their ideas to the design of

integrated circuits. The authors have proposed a McCul-

loch�Pitts-type neural network with hysteresis charac-

teristics and a one-dimensional optimum (winner-take-all)

neural network. They have applied these networks to com-

binatorial optimization problems, and have reported posi-

tive results [3�5]. Recently, the authors have proposed a

new neural network using two-dimensional neuron model-

ing, and have applied it to two-dimensional combinatorial

optimization problems [6]. Now the authors are applying

this model to a fundamental problem in optimum layout,

that of one-dimensional gate assignment. They are propos-

ing an operating equation approximation method. Having

confirmed its efficacy, they are reporting their results. This

method can also be used for other optimal layout problems

in VLSI design, such as the PLA (Programmable Logic

Array) folding problem.

2. One-Dimensional Gate Assignment Problem

The one-dimensional gate was proposed in 1967 by

Weinberger [8], and is a logic gate also referred to as a

Weinberger array. Figure 1 shows how this gate is repre-

sented, with (a), (b), and (c) illustrating the logic symbol of

a NOR gate, its circuitry, and a diagram of the mask pattern,

respectively. Note that line D is what would be connected

to another gate. In the one-dimensional gate assignment

problem, Fig. 1(c) is replaced with (d) for the purpose of
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simplification. The gate, metal wiring, and contacts are

shown using vertical lines, horizontal lines, and solid circles

respectively. In the one-dimensional gate assignment prob-

lem, several one-dimensional gates are handled, with the

metal wire connecting the gates being called a net. Figure

2(a) shows an example of the net layout in the one-dimen-

sional gate assignment problem. Here Ni refers to the i-th

net. Note that the gates on the far left and the far right are

positioned at the leftmost and rightmost columns (vertical

arrays). For instance, gates 0 and 4 in Fig. 2(a) are assigned

to columns 0 and 14, respectively. Moreover, the net is laid

out flat on tracks (horizontal lines). The following limiting

conditions must also be satisfied in the one-dimensional

gate assignment problem.

(1) The n-th gate must be laid out for all columns n

by assigning one different gate per column.

(2) All gates must be in contact with each other.

The purpose of the one-dimensional gate assignment

problem is to satisfy the above limiting conditions and to

minimize the number of tracks required. As an example, the

result of optimizing the assignment of the 13 gates shown

in Fig. 2(a) is presented in Fig. 2(b). The minimum number

of tracks in this instance is seven, with an area which is

under 80% compared to Fig. 2(a). This demonstrates that

the one-dimensional gate assignment problem is NP-hard

[9].

There are fundamentally two operations necessary in

the one-dimensional gate assignment problem. The first is

Fig. 1. An example of the representation by the

one-dimensional gate assignment problem. (a) A logic

symbol of a NOR gate; (b) the circuitry of (a); (c) a

simplified mask pattern of (b); (d) the representation of

(c) for the one-dimensional gate assignment problem.

Fig. 2. An example of the one-dimensional gate

assignment problem (net layout). (a) Before

optimization; (b) after optimization.
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the assignment of columns for gates, and the second is the

layout of net tracks. In past proposed methods to solve the

one-dimensional gate assignment problem [10�17], there

have been methods which solved these two operations at

the same time and methods which emphasized the gate

assignment method and used the left-edge-first algorithm

[10] for net layout. Here, the left-edge-first algorithm is a

method which lays out the net with the minimum number

of tracks for the given gate layout. Note that the left-edge-

first algorithm satisfies the limiting condition (2) above. In

this paper, the input for each neuron is determined using the

left-edge-first algorithm, and then the gate assignment is

determined using the output of each neuron.

3. Methods of Expression Using Neural Networks

Mathematical models of artificial neural networks

are composed of two elements, referred to as neurons and

synapses. The output signal of a neuron passes through a

synapse junction, and then is transmitted as an input to

another neuron. If the neuron input is U and the output is

V, the input/output relationship for the i, j-th neuron is

expressed as Vi,j = f(Ui,j). Here, f is the neuron input/output

function. Hopfield and Tank used a sigmoid function which

could be integrated. However, the synapse junction is gen-

erally expressed using an operating equation which repre-

sents the junction state between the i,j-th neuron shown in

Eq. (1) and another neuron:

As will be described later, the energy function on the right

of Eq. (1), E expresses the cost, a necessary and sufficient

condition (constraint) for the problem. In this paper, Eq. (1)

and the primary Euler method are used, and the input for

each neuron is updated using the following equation:

Here, 'Ui,j = dUi,j/dt. In addition, an n u n neural network

array is used for the (n + 2) element one-dimensional gate

assignment problem. For instance, the results in Fig. 2(b)

are passed through the 13 u 13 neural network array shown

in Fig. 3. Here, each square shows the output of the i,j-th

neuron. The black and white squares represent a neuron

output, which is 1 or 0, respectively. If the output of the

i,j-th neuron is 1, this indicates that gate i is assigned to

column j. Therefore, in order to satisfy limiting condition

(1) in the one-dimensional gate assignment problem, the

output of one neuron for each row and column in the neural

network array must be 1. Based on the above limiting

condition, E from Eq. (1) can be represented by the follow-

ing equation:

Here, A, B, and C are parameters; R is the track number

determined by the left-edge-first algorithm.

The first and second items on the right-hand side of

Eq. (3) are 0 when the above limiting conditions are ful-

filled. Moreover, the third item on the right-hand side of Eq.

(3) expresses the cost of the given problem. Here, the value

is smaller as the track number R decreases. In other words,

E reaches a minimum when the limiting conditions are

satisfied and R is at a minimum.

Therefore, the operating equation is given by the

following equation, based on Eqs. (1) and (3):

However, it is known that the following problems exist for

the two-dimensional format operating equation [18, 19]:

(1) The first and second elements on the right are

not always limited to 0 [limiting condition (1) is not always

satisfied].

(2) Therefore, the track number R determined by

the left-edge-first algorithm cannot be determined.

(3) Furthermore, because each parameter value is

unknown, it must be determined empirically.

(1)

(2)

Fig. 3. The 13 u 13 neural network array for Fig. 2(b).

(3)

(4)
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The method using a sigmoid function for the in-

put/output function for the neurons has the following prob-

lems [18, 19]:

(4) The threshold value, and maximum and mini-

mum values for input are also determined empirically.

(5) Calculations for the sigmoid function are time-

consuming. 

Therefore, in this paper, a two-dimensional optimum

neuron model, shown in Eq. (5), is used to resolve the above

problems.

In Eq. (5), first the output of the a,b-th neuron, which has a

maximum input, is set to 1. Then, from among the neurons

excluding the a,*-th and the *,b-th neuron, the output of the

c,d-th neuron, which has a maximum input, is set to 1. Here,
* represents all integers from 1 to n. In the same fashion, the

e,f-th neuron having the highest input from among the

neurons except for the a,*-th neuron, the *,b-th neuron, the

c,*-th neuron, and the *,d-th neuron, has its output set to 1.

This is repeated until the output of the n-th neuron is set to

1. In other words, the output of the (n2 � n)-th neuron

becomes 0. Limiting condition (1) is satisfied by virtue of

the input/output relationship for this neuron. The operating

equation (4) can be simplified as follows:

Nevertheless, the partial differential of R(V1,1, . . . ,

Vi,j, . . . , Vn,n) with respect to Vij in Eq. (4c) is impossible

to obtain. In the past, a method to solve problems for energy

functions with elements which cannot be differentiated

using neural networks was thought to be inappropriate. In

this paper, the right part of Eq. (4c) or of Eq. (1) represents

the penalty for the i,j-th neuron. Attention is given to

revising the input using Eq. (2), depending on the size of

the penalty, and Eq. (4c) approaches the following equation

(in other words, as R increases, the penalty becomes larger):

O: target track number, where O < R. Here O is used in order

to determine the end (O > R) when doing iterative calcula-

tions. Also, for the k,l-th neuron for Vk,l = 0, Vk,l is set to 1

temporarily, and the output of the k,x-th neuron for Vk,x =

1 is set to 0 in order to obtain R in Eq. (6). Moreover, the

output of the y,1-th neuron for Vy,1 = 1 is set to 0, then, with

Vy,x = 1, the track number R is found using the left-edge-

first algorithm. For instance, in order to find dU1,1/dt as

shown in Fig. 4(a), V1,1 is set to 1 and V1,2 to 0 temporarily.

Then V3,1 is set to 0 and V3,2 is set to 1, after which R is

found using the left-edge-first algorithm. As illustrated in

Fig. 4(b), this is the same as temporarily switching gates 1

and 3. At this time, if R = 9 and O = 7, dU1,1/dt = �2. A

heavy penalty is levied against the neuron whose gate

assignment has an R which increases in Eq. (6), and its input

becomes smaller.

This method is similar to SA (simulated annealing),

a method which improves consecutively by temporarily

(5)

(4c)

(6) Fig. 4. The explanation for the calculation of dU1,1/dt.

(a) The neural network array representation to calculate

dU1,1/dt; (b) the net layout representation to calculate

dU1,1/dt.
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switching the gates, and to GA (genetic algorithms) and

other related search methods. However, in contrast to the

direct overall evaluation of R in SA and GA, this method is

significantly different in that R is used to evaluate the

amount of change in a single neuron�s input. In addition,

Eq. (6), used as a method to avoid convergence toward a

local solution, as is also the case in SA and GA, is improved

in this paper:

Here, t is the number of iterative calculations, a mod b is

the residue of a modulo b, and w is a parameter.

Because a heavy penalty tends to be levied on a

neuron whose output is 0 when Eq. (6) is used, these

equations are designed so that the parameter w and the first

equation in Eq. (6c) are used, and a penalty is levied only

against the neuron whose output is 0. The parameter w is

the only parameter in this method, and it allows for im-

proved concentration on optimal solutions. Note that w = 4

was used for all of the experiments described below. Also,

because the first equation in Eq. (6c) is 0 for the neuron

whose output is 0, there is no need to do calculations

beforehand in this method. This has the advantage of accel-

erating the calculations.

4. Parallel Calculation Algorithms and Their Results

The parallel algorithms for the one-dimensional gate

assignment problem using the two-dimensional optimum

neuron model proposed in this paper are as follows. Note

that t_limit represents the maximum number of iterative

calculations, which determines the final conditions for the

calculations.

Step 1: t = 0 and C = 1 are the initial conditions, with

the values for O and t_limit being determined as appropri-

ate.

Step 2: Initial values for all Ui,j (t) (i, j = 1, . . . , n) are

determined using random numbers.

Step 3: The values for all Vi,j (t) (i, j = 1, . . . , n) are

obtained using Eq. (5).

Step 4: The values for 'Uij (t) (i, j = 1, . . . , n) are

found for each neuron using Eq. (6c). Here 'Uij (t) = dUij

(t)/dt is used.

Step 5: When 'Uij (t) t 0, the solution is recorded,

and O = O � 1.

Step 6: The values for Uij (t + 1) (i, j = 1, . . . , n) are

found for all neurons using Eq. (2).

Step 7: If t = t_limit, the calculations are terminated.

Otherwise, t = t + 1, and the process returns to Step 3.

In this algorithm, all input is updated simultaneously in

Steps 4 and 6, using a synchronous parallel calculation

method. Therefore, these calculations can be performed on

a parallel computer. However, the results for calculations

performed on an HP9000/710 are shown here.

Table 1 shows the results of evaluating this algorithm

using five benchmark problems. For purposes of compari-

son, the table also shows the results obtained using a

different algorithm. It can be seen that the number of tracks

obtained using this algorithm is the same or smaller than

what was found using the past method. In particular, in

problems 4 and 5, a track number over 15% smaller was

obtained. Figure 5 is a net layout diagram obtained for

problem 4 using this algorithm.

5. Conclusion

In this paper, the authors proposed a parallel algo-

rithm using a neural network which uses a two-dimensional

optimum neuron model as a method to solve the one-dimen-

Table 1. The problems and the results

Fig. 5. One of the solutions for problem 4.

(6c)
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sional gate assignment problem, a fundamental problem in

VLSI design. In this method, an n u n neural network array

is used for the one-dimensional gate assignment problem

with (n + 2) elements. By satisfying the limiting conditions

for the problem using a neuron model, the problem of

operating equations in quadratic form is addressed. In ad-

dition, the authors proposed an approximation method for

operating equations in cases in which the energy function

cannot be differentiated. Using computer simulations, the

results showed that more near-optimal solutions could be

found as compared to previously proposed algorithms.

Moreover, this method has the advantage of not requiring

the many parameters needed in other representative optimi-

zation methods such as SA and GA, and not requiring the

�good initial values� needed by many heuristic algorithms.

Given the above, the optimization method using two-di-

mensional optimum neuron models and parallel algorithms

has been confirmed as effective in the layout of one-dimen-

sional arrays in VLSIs.

However, using the two-dimensional optimum neu-

ron model has the disadvantage of not being able to update

output in parallel. The authors plan to improve their

method, including this point, and adapt the algorithm for

parallel computers. In addition to confirming the efficacy

of this method in problems with larger gate numbers and

net numbers, the authors plan to apply this method to the

problem of optimum assignment in two-dimensional arrays

[20, 21].
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APPENDIX

Left-Edge-First Algorithm

The algorithm below generates net layouts so as to

minimize the number of tracks, without exchanging the nets

when creating gate assignments [10].

Step 0: The procedure below is repeated until all nets

are assigned, starting from the first track.

Step 1: Moving from the leftmost column to the right

one column at a time, the net for which that column has
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been assigned to the leftmost gate, excluding nets which

have already been laid out, is searched for.

Step 2: The net is laid out.

Step 3: Moving from the column, one column at a

time, to the right of the column to which the rightmost gate

for the net laid out in Step 2 has been assigned, the net for

which that column has been assigned to the leftmost gate,

excluding nets which have already been laid out, is searched

for.

Step 4: Repeat Steps 2 and 3 until the rightmost

column is reached.

Step 5: Move to the next track, then repeat from Step

1.
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