
International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 46

Simplified IPSec Protocol Stack for Micro Server

Nguyen Thanh Hoa1, Kensuke Naoe1, and Yoshiyasu Takefuji2

(Corresponding author: Nguyen Thanh Hoa)

Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa, Japan1

Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa, Japan2

(Email: {hoant, naoe, takefuji}@sfc.keio.ac.jp)
(Received Oct. 26, 2008; revised and accepted June 27, 2009)

Abstract

In this paper, we propose a simple IPSec protocol stack for
Micro Server. We proposed an implementation of IPSec
protocol stack which is constructed by Encapsulating Se-
curity Payload (ESP) protocol with Advanced Encryption
Security (AES) encryption scheme, whereas authentica-
tion using MD5 algorithm is optional. Researchers have
focused on creating a small system composed of sensors
and a Micro Server where it has a small sized memory,
multi-function, low cost, but without security consider-
ation. The security problem in the Micro Server is a
challenging task because of the very limited flash mem-
ory.Here, we have implemented the AES function as 2.704
Kbytes and the ESP protocol with this encryption func-
tion as 3.822Kbytes of code. Therefore, the proposed
method has less than 4Kbytes in code size. Even includ-
ing the authentication using MD5, the file size is less than
7Kbytes although this is still optional. In our proposed
method, we have focused on implementing the encapsula-
tion of the payload and ignored the key exchange proce-
dure to simplify the secure communication compared to
conventional IPSec protocol stack.
Keywords: 8-bit micro-controller, IPSec, micro server,
security, sensor

1 Introduction

In the world, many people gather their strength and intel-
ligence to have fast and accurate information. Therefore,
information becomes the target that everyone wants to
pursue. On the other hand, everyone wants to keep their
own information secret. Nowadays, with the development
of technology and science, we can make small sensors and
Micro Servers very easily. These small and cheap sen-
sors and Micro Server are deployed in many useful, low
cost applications. Security is an important issue when
these devices are used in health care applications, home
appliances and many others. However, researchers design
sensors and Micro Server with purpose of small size, low
cost rather than security. Security is challenging tasks be-

cause of very small processors and very limited memory
[13].

Cryptography is the art of secret writing. Cryptogra-
phy guarantee security properties such as authentication
or secrecy in the information exchange between users and
server. This paper analyzes normal security methods us-
ing cryptography and then proposes a simple IPSec proto-
col that can protect very small sensors and Micro Server.
In the implementation, we have established ESP protocol
with code size less than 7Kbytes. This simple IPSec pro-
tocol is very useful for security connection between small
devices and Internet. IPv6 is the “next generation” proto-
col to replace the current version Internet Protocol IPv4
[12]. In IPv6, IP security protocol (IPSec) is a mandatory
feature. RFC 2460 [9] states that a “full implementation
of IPv6” includes implementation of the authorization
header (AH) and encapsulating security payload (ESP)
[14]. The simple IPSec protocol helps very small devices
to connect safely to Internet IPv4 and is good referred
materials to improve and apply for IPv6.

2 Background

2.1 The Micro Server

We made a Micro Server gadget that followed the de-
sign of Takefuji [19] that is shown in Figure 1. This Mi-
cro Server uses 8bit micro-controller Atmega168 with 16
Kbytes flash memory. Adam Dunkel, the author of the
simple TCP/IP stack embedded inside this Micro Server
with size of flash memory is about 8466 bytes [20].

The limitation of the Micro Server is that it has very
small memory (only left 7 Kbytes for security function)
and limited processing: 512 Bytes EEPROM Data Mem-
ory, 1024 Bytes SRAM Data Memory, 32 MCU General
Purpose Registers (Accumulators), 0 - 20 MHz Specific
Clock Frequency Supply, 2.7 - 5.5 v Voltage. We will use
this Micro Server to test the implementation of a sim-
ple IPSec protocol that we will describe in the following
sections.



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 47

Figure 1: Micro server

2.2 The Security Methods

To transfer the information from sensor and Micro Server
to PC, we can establish a simple TCP/IP stack on these
devices. We have to use the security methods to pre-
vent hackers who want to get the information or attack
Micro Server. Cryptographic protocols are good security
methods with high confidence. There are two main types
of security methods for TCP/IP stack: security for ap-
plication layer and security for network layer. However,
Micro Server using 8-bit micro-controller has limited flash
memory, small processor so we analyze theses properties
to choose a suitable method for security.

2.2.1 Security for Application Layer

To secure an application layer, we can establish SSH -
Secure Shell protocol by using 3DES for encryption and
RSA for authentication. However, implementing public
key cryptography for Micro Server is difficult if we have
only 7 Kbytes flash memory.

Public key cryptography has high security and conve-
nience. It provides digital signatures for encryption and
authentication. We can apply these public key crypto-
graphic algorithms to secure application layer. Public
key cryptographic algorithms have public keys and pri-
vate keys. Other sensors or Micro Servers encrypt data
by using public keys and send to receiver. Only the device
with the proper private key can decrypt data correctly.

RSA is well-known algorithm and is used in many of
the public key systems. However, the significant param-
eters such as the speed of execution, the difficulty of key
generation, establishment of system parameters and the
size of data to be stored in the memory is too large and
makes RSA not suitable for securing these small sensors
and Micro Server [2].

2.2.2 Security for Network Layer

IPSec is a suitable protocol for securing network connec-
tions but it is complex protocol. This provides the ability
to encrypt any higher layer protocol and authenticating
each IP packet. IPSec offers the greatest flexibility of all
the existing TCP/IP cryptosystems. We can see the com-
plexity of IPSec protocol in the Figure 2 [3]: processing
key exchange; processing Security Policy, Security Asso-
ciation (by SPD, SAD) and two protocols AH - Authen-
tication Header, ESP - Encapsulating Security Payload.

IPSec defines SA - Security Association. SA is a rela-
tionship between two or more entities that present how
the entities use IPSec to communicate securely. When
IPSec is required, the end points have to determine se-
curity parameters such as which algorithms to use (for
example, DES or AES for encryption, MD5 or SHA for
integrity). SA is defined by the packet’s destination IP
address and a SPI - Security Parameter Index. There are
two modes of IPSec: transport mode and tunnel mode.
In transport mode, IPSec data field begins with higher
level packet headers (ICMP, TCP or UDP). Tunnel mode
is similar with traditional VPN; IPSec data field begins
with an entirely new IP packet header.

In IPSec, there are two main protocols to provide
packet-level security: AH - Authentication Header and
ESP - Encapsulating Security Payload. AH protocol pro-
vides integrity, authentication and non repudiation. The
AH can protect replay attacks by using sliding window
technique and discarding old packets. In AH transport
mode, IP packet include the new AH header and full IP
header that is shown in Figure 3.

ESP protocol provides confidential protection, authen-
tication and integrity. This protocol has encryption and
authentication functions. Authentication is optional but
if we use encryption without authentication then ESP pro-
tocol is insecure and crackers can attack this connection.
IPSec transport mode is shown in Figure 4.

Although a normal IPSec protocol is more complex
than SSH, but is more feasible because we propose a sim-
ple IPSec protocol in the following Section 3.

3 The Proposed Simple IPSec

Micro-controller is used for creating sensors or Micro
Server and has a limited memory and small processors,
for example 8bit-micro-controller has only 16 Kbytes flash
memory. Therefore, we have very limited memory for es-
tablishing IPSec protocol. If we have only 7 Kbytes flash
memory, then we need a very simple IPSec protocol to
secure connections between client and Micro Server or
connections from sensors to PCs.

We have a simple TCP/IP stack extending figure that
includes IPSec protocol as Figure 5 [20].

Although IPSec protocol is very complex: processing
key exchange; processing Security Policy, Security Associ-
ation and two protocols AH, ESP as we mentioned above,
we can simplify this protocol by reducing functions and



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 48

IPSec Peer B (Initiator role) IPSec Peer A (Initiator role) 

Domain-wide 

Policy

Manager 

Network 

Interface

Network 

Interface

IPIP

TCP/UDPTCP/UDP

TCP/IP

Applications 

TCP/IP

Applications 

Policy Agent Policy Agent 

ISAKMP SA 
IKEIKE

SADSPD SPD

AHAH

SA

        IPSec   IPSec 
SA

SA

IP@b IP@a
ESP ESP

SA

AH AH

SAD

Figure 2: The IPSec architecture

optimize coding to have smallest code size. There has
been significant debate about the necessity for AH, which
provides only integrity protection, since ESP can provide
integrity protection or encryption or both.

The integrity protection provided by AH extends to
portions of the IP header, whereas ESP’s integrity protec-
tion is only of the payload. The opponents of AH argue
that it is unnecessary to protect the IP header, and if it
were necessary, could be provided by tunnel mode. The
debate has been heated and the issues are complex [6, 16].

In this case, ESP protocol is enough for securing con-
nections between peers so establishing a simple IPSec pro-
tocol is only the simple implementation ESP protocol. By
this way, we can establish a secure VPN - virtual private
network that require both authentication and encryption.
To save memory, we can implement key and SPI, IV pa-
rameters in the program and do not need processing key
exchange, processing SA in Micro Server. In the future,
if we have enough memory space, we will process these

functions.

RFC 4303 standard [18] describes ESP in detail. ESP
has both encryption and authentication, therefore ESP
is complex protocol. We can establish ESP protocol with
one encryption algorithm which has high confidence and a
hash function for authentication which has smallest code
size.

DES is well-known in symmetric key cryptography and
is a default algorithm for normal IPSec protocol but DES
now is insecure as mentioned in many studies [8, 15].
Unlike DES, AES algorithm is fast in both on software
and hardware, easy to implement and requires little mem-
ory. In recent years, AES is deployed on a large scale [1].
Therefore, we choose only AES algorithm for encryption
in ESP protocol.

Figure 6 shows the simple IPSec protocol using simple
ESP which uses AES for encryption and hash function
MD5 for authentication.



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 49

Figure 3: IPSec in AH transport mode (Source: An illus-
trated guide to IPSec)

4 Implementation & Experiment
Results

There are 4 steps to establish this simple IPSec protocol
for Micro Server:

1) Implementing AES algorithm.

2) Implementing MD5 hash function.

3) Establishing ESP protocol: processing ESP header,
IP header and encryption/decryption higher payload,
implementing authentication.

4) Testing the securable connection between client and
Micro Server when a simple IPSec is established in
Micro Server and client use a normal IPSec protocol.

We have implemented Steps 1, 2 and 3: implemented
AES algorithm in 2704 bytes (2.704 Kbytes) and MD5
hash function in 2144 bytes (2.144 Kbytes). Also we have
established ESP protocol (only encryption) with code size
of 3822 bytes (3.822 Kbytes). Now we are testing this sim-
ple IPSec (ESP encryption) with a normal IPSec protocol
in the client side. The final size of the simple IPSec pro-
gram is less than 7 Kbytes. In the client’s side, we use
Openswan to create a full IPSec protocol.

4.1 AES Implementation

We followed the standard of Advanced Encryption Stan-
dard - AES to implement this algorithm, Federal Infor-

Figure 4: IPSec in ESP transport mode (Source: An il-
lustrated guide to IPSec)

mation Processing Standards Publication (FIPS PUB) is
issued by the National Institute of Standards and Tech-
nology (NIST) [5].

The main AES Encryption is shown as following code:

void encryptAES(u8 *data, u8 *key, u32 data length, u8
*cipher)

{
u32 i;
u8 *s;
u8 rnd key[16];
u8 rnd con[4] = 0x01, 0x00, 0x00, 0x00;
u8 j;
for(i=0 ; i ¡ data length ; i+=16)
{
s = data+i;
rnd con[0] = 0x01;
for(j=0 ; j¡16 ; j++)
rnd key[j]=key[j];
// K = 128, Nr = 10, Nk = 4.
for(j = 0; j ¡ 9; j++)
{
addRoundKey(s, rnd key);



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 50

APPLICATION 

TCP

IPSec

IP (plus ICMP) 

ARP

ETHERNET

Figure 5: A simple TCP/IP stack including IPSec

substituteByte(s);
shiftRow(s);
mixColumn(s);
keyExpansion(rnd key, rnd con);
}

addRoundKey(s, rnd key);
substituteByte(s);
shiftRow(s);
keyExpansion(rnd key, rnd con);
addRoundKey(s, rnd key);
for(j=0 ; j¡16 ; j++)
cipher[j] = s[j];}

}

The AES decryption function is:
void decryptAES(u8 *data, u8 *key, u32 data length, u8
*decipher)

{
u32 i;
u8 *s;
u8 j;
u8 rnd key[16];
u8 rnd con[4] = 0x01, 0x00, 0x00, 0x00;
for(i=0 ; i ¡ data length ; i+=16)
{
s = data+i;
rnd con[0] = 0x01;
calLastRoundKey(rnd key, key, rnd con);
for(j=0 ; j¡16 ; j++)
s[j] = s[j]r̂nd key[j];

IPSe

ARP/Ethernet

TCP/IP (ICMP) 

MD5

AES

ESP

Figure 6: A simple IPSec protocol

// K = 128, Nr = 10, Nk = 4.
for(j = 9; j ¿ 0; j–)
{
invShiftRow(s);
invKeyExpansion(rnd key,rnd con);
invSubstituteByte(s);
invAddRoundKey(s, rnd key);
invMixColumn(s);
}

invShiftRow(s);
invSubstituteByte(s);
invAddRoundKey(s, rnd key);
for (j = 0; j ¡ 16; j++)
decipher[j] = s[j];

}
}

We tested this algorithm implementation by turn on or
turn off of LED 1, 2 in the Micro Server gadget.

// AES test:
u8 key[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
0x0f};

u8 data[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff};

u8 store[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 51

Figure 7: AES testing environment for Micro Server

0xff};
u8 cipher[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,
0x0f};

u8 decipher[16] = { 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,
0x00, 0x00};

int k;
encryptAES(data, key, 16, cipher);
decryptAES(cipher, key, 16, decipher);
int tmp = 2;
for (k = 0; k ¡ 16; k++){
if (tmp == 1)
{ // turn on LED 1
DDRD= (DDRD — 0x80);
PORTD= (PORTD — 0x80); }

else if (tmp == 2)
{ // turn on LED 2
DDRC = (DDRC — 0x01);
PORTC = (PORTC — 0x01); }

if (decipher[i] == store[i])
tmp = 1;

else
tmp = 0;

}

We had experiment result of this implementation: LED
1’s light is turned on as Figure 7.

4.2 IPSec Protocol Implementation

In Micro Server, we have established IPSec protocol that
has only ESP protocol with AES in CBC mode [17] for
encryption. We have diagrams of simple IPSec processing
as the following Figure 8 and Figure 9.

Send out 

encrypted

AES

Encryption/ 

Decryption 

Process IP Header 

Process ESP Header 

Encryption AES and 

start IV for CBC mode 

Process ARP Protocol  

Process ESP Ender 

Process TCP Header 

Application 

Padding Data 

Store data into TCP Payload

Figure 8: Encryption process in the simple IPSec protocol

To simplify IPSec protocol, we fixed the value of SPI
and IV - Initialization Vector. We saved memory by not
creating SAD and SPD. This IV is used for AES CBC
mode in ESP protocol.

u8 t iv tmp[16] = {0xD4, 0xDB, 0xAB, 0x9A, 0x9A,
0xDB, 0xD1, 0x94, 0xD3, 0xDA, 0xAA, 0x99, 0x99,
0xDA, 0xD0, 0x93};

BUF → spi = 0x00001018;

We also did not create IKE protocol because we want to
skip this protocol to save memory for Micro Server. In
the decryption process of IPSec, we have:
enc ptr += tmpNo;
tcp ptr += tmpNo;
while (tmpNo ≥ 0)



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 52

Process IP Header 

Process ESP Header 

PROTO=

Yes 

No
Don’t have 

Decryption AES and processing 

IV – Init Vector for CBC mode in 

Process ESP Ender 

nextHeader

=TCP

ICMPProcess TCP Header 

Yes 

No nextHeader

=ICMP
Drop

Yes 

No

Get data from TCP Payload 

Encrypted IP Packet 

Process ARP Protocol  

Application 

AES

Encryption/Decryption 

Figure 9: Decryption process in the simple IPSec protocol



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 53

{
decryptAES(enc ptr, keyEnc, 16, tcp ptr);
if(tmpNo == 0)

iv pro = (const u32*) iv sto;
else
iv pro = (const u32*) (enc ptr - 16);

// CBC Processing
*((u32 *)(&tcp ptr[ 0])) =̂ iv pro[0];
*((u32 *)(&tcp ptr[ 4])) =̂ iv pro[1];
*((u32 *)(&tcp ptr[ 8])) =̂ iv pro[2];
*((u32 *)(&tcp ptr[12])) =̂ iv pro[3];
enc ptr -= 16;
tcp ptr -= 16;
tmpNo -= 16;

}

In encryption process of IPSec, we have:
u8 t iv tmp[16] = {0xD4, 0xDB, 0xAB, 0x9A, 0x9A,
0xDB, 0xD1, 0x94, 0xD3, 0xDA, 0xAA, 0x99, 0x99,
0xDA, 0xD0, 0x93};

iv sto = &iv tmp[0];
while (tmpNo ¡ uip len)

{
if(tmpNo == 0)
iv pro = (const u32*) iv sto;

else
iv pro=(const u32*) (enc ptr-16);

*((u32 *)(&enc ptr[ 0])) = iv pro[0]∧∗((const u32
*)(&tcp ptr[0]));
*((u32 *)(&enc ptr[ 4])) = iv pro[1]∧∗((const u32
*)(&tcp ptr[4]));
*((u32 *)(&enc ptr[ 8])) = iv pro[2]∧∗((const u32
*)(&tcp ptr[8]));

*((u32 *)(&enc ptr[12])) = iv pro[3]∧∗((const u32
*)(&tcp ptr[12]));

encryptAES(tcp ptr, keyEnc, 16, enc ptr);
tcp ptr+=16
enc ptr+=16;
tmpNo+=16;
}

In the client side, we will establish IPSec protocol by
using Openswan installed in Ubuntu on VMware. We
changed ipsec.conf of Openswan manually [10].

# /etc/ipsec.conf - Openswan IPsec configuration file
# RCSID $Id: ipsec.conf.in,v 1.15.2.6 2006-10-19
03:49:46 paul Exp $
# Manual: ipsec.conf.5
version 2.0
# conforms to second version of ipsec.conf specification
# basic configuration
config setup

klipsdebug = none
plutodebug = none
uniqueids = yes

# Add connections here

# sample VPN connections, see /etc/ipsec.d/examples/
conn%default

keyingtries = 0
# transport ESP with manual setting - AES for encryp-
tion.
# between uip in Micro Server (133.27.66.66) & linux
machine “hoa” (133.27.66.1) conn secuip
conn secuip

authby = manual
left = 133.27.66.66
leftid = uip
right = 133.27.66.1
rightid = @hoa
esp = aes128
spi = 0x1018
espenckey =

0x00010203 04050607 08090a0b 0c0d0e0f
auto = add

# Disable Opportunistic Encryption include
/etc/ipsec.d/examples/no oe.conf

We have to use software (Openswan) to create IPSec
protocol in the client side and test with Micro Server.
Normally, this software doesn’t allow skipping IKE pro-
tocol. Therefore, there are two ways to solve this problem:
changing type of micro-controller in Micro Server or find-
ing software that can skip IKE protocol. For the former,
we will create small IKE protocol in Micro Server. The
current Micro Server has limited micro-controller with 16
Kbytes and it is not enough. We need to change type
of this micro-controller to have memory more than 25
Kbytes. For the latter, we will find how to ignore IKE
protocol in the client side and test with simple IPSec pro-
tocol in Micro Server.

5 Conclusion and Future Work

In this paper, we have analyzed security methods for Mi-
cro Server which has limited memory and small processor.
By this analysis, we can see that IPSec is good choice
for Micro Server security. We proposed a very simple
IPSec protocol for establishing a secure layer in a simple
TCP/IP stack. A full IPSec protocol has many functions
and is complex. For us, the simple IPSec protocol need
only ESP protocol with only AES algorithm for encryp-
tion and only MD5 algorithm for authentication. This
simple IPSec protocol can establish secure connections
which satisfy security requirement of Micro Server or sen-
sors. We have implemented AES algorithm in 2704 bytes,
MD5 in 2144 bytes and simple ESP protocol (with encryp-
tion). We have established a simple IPSec protocol that
has only AES encryption with code size of 3822 bytes.
The final size of the simplified IPSec program is less than
7 Kbytes.

In the future, we will find the suitable method to
test and debug the secure connection between this sim-
ple IPSec in Micro Server with a normal IPSec protocol



International Journal of Network Security, Vol.11, No.1, PP.46–54, July 2010 54

of client to realize a very small security system for Micro
Server.

References

[1] Advanced Encryption Standard. (http://en.wikipedia
.org/wiki/Advanced Encryption Standard)

[2] F. Amin, A. H. Jahangir, and H. Rasifard, “Anal-
ysis of public-key cryptography for wireless sensor
networks security,” pp. 530-535, 31 July 2008.

[3] Atmel Corporation, Atmega168 Datasheet.
(http://www.datasheetcatalog.org/datasheet/atmel
/2545S.pdf)

[4] A. Dunkels, and J. Alonso, Making TCP/IP Viable
for Wireless Sensor Networks, Thiemo Voigt Swedish
Institute of Computer Science.

[5] Federal Information Processing Standards Publica-
tion 197, Announcing the Advanced Encryption Stan-
dard (AES), Nov. 26

[6] N. Ferguson, and B. Schneier, A Cryptographic Eval-
uation of IPSec, Apr. 1999. (http://www.counter
-pane.com/ipsec.html)

[7] S. Friedl, An Illustrated Guide to IPSec. (http://
unixwiz.net/techtips/iguide-ipsec.html)

[8] M. Hellman, “DES will be totally insecure within ten
years,” IEEE Spectrum, vol. 16, no. 7, pp. 31-41, July
1979.

[9] Internet Protocol, Version 6 (IPV6) Specification,
RFC 2460, 1998. (http://www.faqs.org/rfcs/rfc2460
.html)

[10] IPSec.conf - IPSec Configuration and Connections
Reference. (http://man.free4web.biz/man5/ipsec.
conf.5.html)

[11] IPSec Guide Architecture & Traffic Processing.
(http://www.tech-invite.com/Security/Ti-IPSec-
archi.pdf)

[12] IPv6 Information Page. (http://www.ipv6.org/)
[13] K. Lorincz, and D. J. Malan, T. R. F. F. Jones, A.

Nawoj, A. Clavel, V. Shnayder, G. Mainland, M.
Welsh, and S. Moulton, “Sensor networks for emer-
gency response: Challenges and opportunities, IEEE
Pervasive Computing, vol. 3, no. 4, pp. 16-23, 2004.

[14] C. Metz, “Guest editor’s introduction: Moving to-
ward an IPV6 future,” IEEE Internet Computing,
vol. 7, no. 3, pp. 25-26, May/June 2003.

[15] A. E. Pascual, History of DES. (http://www.it46.se
/downloads/courses/security/en/02 Cryptography/
en security B2B historyDES slides escuderoa.pdf)

[16] R. Perlman, and C. Kaufman, “Key exchange in
IPSec - Analysis of IKE,” IEEE Internet Comput-
ing, vol. 4, no. 6, pp. 50-56, 2005.

[17] The AES-CBC Cipher Algorithm and Its Use with
IPSec, RFC 3602, 2003. (http://www.faqs.org/rfcs/
rfc3602.html)

[18] IP Encapsulating Security Payload (ESP), RFC
4303, 2005. (http://www.ietf.org/rfc/rfc3686.txt)

[19] Y. Takefuji, Takefuji Lab. (http://www.neuro.sfc
.keio.ac.jp/)

[20] The open-source uIP TCP/IP stack. (http://www.
dunkels.com/adam/uip)

[21] Openswan. (http://www.openswan.org/)

Nguyen Thanh Hoa is a second year Master student
of Graduate School of Media and Governance at Keio
University in Japan. From 1999 to 2002, she learned in
high school for talented Mathematics students of Na-
tional University in Vietnam. She received the bachelor
degree from Posts and Telecommunications Institute
of Technology (PTIT) in 2007. She got the second
prize for student’s research in PTIT in 2005. From
2007, she has worked for Research Institute of Post and
Telecommunication. Her major is cryptography, security
protocols and internet gadgets. Her research interests are
network security, network protocols, ubiquitous system,
sensors network and transmit codes. Besides, she is
interested in searching engineering, maps processing,
mobile games, 3D environment, signaling processing for
communications and telecommunication architecture.

Kensuke Naoe is a Ph.D. candidate, graduated from
the Faculty of Environment and Information Studies of
Keio University in 2002. He received the Master degree
from the Graduate School of Media and Governance at
Keio University in 2004. His major is artificial neural
network and information security. His interested research
areas are digital information hiding, machine learning,
network intrusion detection and malware detection.

Yoshiyasu Takefuji is a tenured professor at the Fac-
ulty of Environment and Information Studies of Keio Uni-
versity, since April 1992 and was on tenured faculty of
Electrical Engineering at Case Western Reserve Univer-
sity, since 1988. Before joining Case, he taught at the
University of South Florida and the University of South
Carolina. He received his BS (1978), MS (1980), and
Ph.D. (1983) from Electrical Engineering from Keio Uni-
versity. His research interests focus on neural computing,
security, internet gadgets, and nonlinear behaviors. He
received the National Science Foundation/Research Ini-
tiation Award in 1989, the distinct service award from
IEEE Trans. on Neural Networks in 1992, and has been
an NSF advisory panelist. He has received the best paper
award from AIRTC in 1998 and a special research award
from the US air force office of scientific research in 2003.
He is currently an associate editor of International Journal
of Multimedia Tools and Applications, editor of Interna-
tional Journal on Computational Intelligence and Appli-
cations, and editor of International Journal of Knowledge-
based intelligent engineering systems. He was an editor
of the Journal of Neural Network Computing, an asso-
ciate editor of IEEE Trans. on Neural Networks, Neu-
ral/parallel/scientific computations, and Neural comput-
ing. He has published more than 120 journal papers and
more than 100 conference papers.


