International Journal of

‘<>

Translational Medicine

Tutorial

Set Operations in Python for Translational Medicine

Yoshiyasu Takefuji

check for
updates

Citation: Takefuji, Y. Set Operations
in Python for Translational Medicine.
Int. J. Transl. Med. 2022, 2, 174-185.
https://doi.org/10.3390/
1jtm2020015

Academic Editor: Simone Brogi

Received: 17 March 2022
Accepted: 27 April 2022
Published: 29 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Data Science Department, Musashino University, Tokyo 1358181, Japan; takefuji@keio.jp or
y-take@musashino-u.ac.jp

Abstract: This is the world’s first tutorial article on Python programing on set operations for beginners
and practitioners in translational medicine or medicine in general. This tutorial will allow researchers
to demonstrate and showcase their tools on PyPI packages around the world. Via the PyPI packaging,
a Python application with a single source code can run on Windows, MacOS, and Linux operating
systems. In addition to the PyPI packaging, the reproducibility and quality of the source code must
be guaranteed. This paper shows how to publish the Python application in Code Ocean after the
PyPI packaging. Code Ocean is used in IEEE, Springer, and Elsevier for software reproducibility
validation. First, programmers must understand how to scrape a dataset over the Internet. Second,
the dataset files must be read in Python. Third, a program must be built to compute the target values
using set operations. Fourth, the Python program must be converted to the PyPI package. Finally,
the PyPI package is uploaded. Code Ocean plays a key role in publishing validation for software
reproducibility. This paper depicts a vaers executable package as an example for calculating the
number of deaths due to COVID-19 vaccines. Calculations were based on gender (male and female),
age group, and vaccine group (Moderna, Pfizer, and Novartis), respectively.

Keywords: translational medicine; PyPI package; Python program; dataset; Code Ocean; VAERS

1. Introduction

First, scientists in translational medicine must understand how to use Google search
engine. You may be surprised that depending on browsers, the searched result may be
different. There are two types in keyword searches: word keyword search and phrase
keyword search. In a phrase keyword search, quotation marks indicate the ordered set of
words. For example, “set operations” is composed of two words, i.e., set and operations,
where set must be the first word and operations should be the second word after set.

An exhaustive search for articles containing the two phrases “vaccine safety” and
“set operations” revealed only three articles over the Internet [1-3]. Jacquez et al. showed
how to use set operations for breast cancer analysis where the dataset is only composed
of 285 instances [1]. Lu et al. did not show set operations at all for their analysis where
the phrase of “set operations” was included in their references [2]. Barry DeVille et al.
published a SAS book that briefly introduced set operations using VAERS datasets with
a Statistical Analysis System (SAS) [3]. However, there was no detailed explanation on
set operations by just showing graphic results with SAS. Since SAS needs a proprietary
license, it is not open-source programing. To the best of our knowledge, there is no tutorial
on set operations with open-source programing for vaccine safety. This paper’s role with
open-source programing in Python will be critical for translational medicine to deal with
large datasets.

The author has published a tutorial paper on the PyPI packaging for translational
medicine [4]. However, the significant contribution of this paper lies in that the previous
tutorial did not include software reproducibility and set operations for efficient computing
with large datasets. This paper details the calculations on set operations used in transla-
tional medicine. Set operations are used for calculating adverse effects on deaths due to
COVID-19 using VAERS datasets [5].

Int.]. Transl. Med. 2022, 2, 174-185. https:/ /doi.org/10.3390/ijtm2020015

https://www.mdpi.com/journal/ijtm

https://doi.org/10.3390/ijtm2020015
https://doi.org/10.3390/ijtm2020015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijtm
https://www.mdpi.com
https://orcid.org/0000-0002-1826-742X
https://doi.org/10.3390/ijtm2020015
https://www.mdpi.com/journal/ijtm
https://www.mdpi.com/article/10.3390/ijtm2020015?type=check_update&version=1

Int. |. Transl. Med. 2022, 2

175

There are many articles on the efficacy of vaccines, but few articles on adverse ef-
fects with vaccines. Writing this tutorial on set operations with open-source Python for
translational medicine is motivated by four reasons: (1) we need to show that efficient com-
putation, such as set operations in Python, is crucial for manipulating large datasets such as
VAERS with 748,230 instances; (2) the computational complexity should be understood for
accelerating computation; (3) there is no tutorial analysis on the extensive adverse effects
of COVID-19 vaccines; and (4) PyPI packaging and software reproducibility are essential
for scientists in translational medicine for maximum software dissemination to the world.

This paper presents a data analysis with set operations. The computational time
complexity is depending on the structure of nested loops and the size of individual loops
in algorithms or programs. For example, if your program has a single loop, the size of the
loop determines the computational time complexity. In Python, the computational time
complexity for a single-for-loop is determined by the number of instances (n), which is
called Big O Notation O(n):

for i in range(len(instances)):

In double-nested loops or triple-nested loops, the time complexity can be expressed
with O(n?) and O(n?), respectively. With set operations, the double-nested loops, the triple-
nested loops, and other loops can be converted to O(n). Therefore, this paper introduces
set operations to significantly reduce the time complexity.

For example, when calculating the number of deaths with mixing Pfizer and Moderna
vaccine, with O(n) time complexity, the number of deaths can be generated with set
intersection.

In datasets, the number of instances is equivalent to the number of patients. In other
words, the unique patient IDs can be used and shared in set operations in multiple datasets.
Patient IDs are unique and shared in three VAERS datasets.

The number of Pfizer-death-patients deathPFIZER set can be simply calculated by
intersecting the deathIDs and PFIZERIDs sets. Similarly, the number of Moderna-death-
patients can be computed by intersecting the deaths-set and Moderna-set. Therefore, patient
deaths from mixing the Pfizer and Moderna vaccines can be calculated by intersecting the
Pfizer-death-patients-set and Moderna-death-patients-set. However, we do not know if
Pfizer is the first vaccine. In other words, there are Pfizer-Moderna-death-patients and
Moderna-Pfizer-death-patients. The time complexity in the above calculations is with O(n).

The malelDs and femalelDs sets can be similarly generated with O(n) for gender class
set operations. All features, such as types of vaccines, gender class (male or female), death
or alive (non-death), and ages, can be simply computed in this manner with set operations
with O(n). In other words, the computation time with set operations is drastically reduced
from O(n3) or O(n?) to O(n).

The advantage of PyPl is that it allows vaers to run on Windows, MacOS, and Linux
operating systems, without being aware of operating systems as long as Python is installed
on the system. This advantageous feature of PyPI is that it can maximize the open-source
dissemination of software to the world.

This paper introduces Code Ocean for the reproducibility of software codes after
showing the PyPI packaging. Code Ocean is the de facto service provider for software
reproducibility.

In traditional software development, programmers must write a program from scratch.
With the rapid progress of open-source software, programmers must choose the right
libraries from depositories and glue them with minimum effort. The selected libraries and
packages are available to the public and can be installed by a simple pip terminal-line
command [6]. In other words, programmers must be familiar with the bash command in
the terminal.

In this tutorial, we will follow the order of the execution of the commands in the bash
shell based on reverse engineering. There is no significant difference between Windows,
MacOS, and Linux operating systems.

Int. |. Transl. Med. 2022, 2

176

This paper depicts a vaers executable package [7] as an example for calculating adverse
effects on the number of deaths due to COVID-19 by gender and age group against the
Moderna [8] and Pfizer [9] vaccines. The vaers method is currently under review.

First, programmers must understand how to scrape a dataset over the Internet. The
executable vaers use the VAERS datasets. VAERS stands for Vaccine Adverse Event Report-
ing System. VAERS is a national early warning system to detect possible safety problems
in US-licensed vaccines. VAERS is not designed to determine if a vaccine caused a health
problem, but it is especially useful for detecting unusual or unexpected patterns of adverse
event reporting that might indicate a possible safety problem with a vaccine.

Second, the dataset file must be read in Python. VAERS is composed of three csv files:
2021VAERSDATA .csv, 2021VAERSSYMPTOMS.csv, and 2021VAERSVAX.csv. In vaers.py,
2021VAERSDATA .csv and 2021VAERSVAX.csv are used. csv stands for comma-separated-
value.

Third, a program is built to compute the target values using set operations. This
paper shows how to calculate adverse events of death by sex and age group for each of the
Novartis [10], Moderna, and Pfizer vaccines.

Fourth, the Python program is converted to the PyPI package with three files: setup.py,
vaers.py, and README.md. The README.md file can be created using the GitHub site.
Therefore, you need to create a new account on the GitHub site.

Finally, the PyPI package is uploaded using a twine command. In order to upload a
PyPI package, you need to have an account on the pypi.org site.

In order to use and run a Python program, you must choose a proper installation
package, miniconda, depending on your operating system from the following site:

https:/ /docs.conda.io/en/latest/miniconda.html (accessed on 16 March 2022)

For Windows, double-click on the file, Miniconda3-py38_4.11.0-Windows-x86_64.exe.
Python3.8 is recommended in this paper. For MacOS, the file, Miniconda3-py38_4.11.0-
MacOSX-x86_64.sh, should be installed by the following terminal command: zsh or
bash [11,12]:

$ zsh Miniconda3-py38_4.11.0-MacOSX-x86_64.sh

or

$ bash Miniconda3-py38_4.11.0-MacOSX-x86_64.sh

For Linux, download Miniconda3-py38_4.11.0-Linux-x86_64.sh and run the following
command:

$ bash Miniconda3-py38_4.11.0-Linux-x86_64.sh

For Windows users, you have two options of Miniconda: one on Windows 11 or 10
and the other on Windows Subsystem for Linux (WSL). WSL is a compatibility layer for
running Linux binary executables (in ELF format) natively on Windows 11 or 10. WSL has
not been completed yet, but you are allowed to use binary executables on Windows from
the WSL command line.

From here onwards, there is no difference between all operating systems. You should
be familiar with conda and pip command with options:

First, start a terminal command and update the Miniconda environment by the fol-
lowing command. The first ($) is a prompt from the terminal, while the second ($) is the
dollar key.

$ conda update conda

Second, update the pip installation command. “-U” stands for update.

$ pip install -U pip

or

$ python -m pip install -U pip

In order to install pandas, for example, run the following command.

$ pip install -U pandas

or

$ conda install pandas

In order to know the Python version number,

https://docs.conda.io/en/latest/miniconda.html

Int. |. Transl. Med. 2022, 2

177

$ python -V

Python 3.8.4

the “which” command can inform the location of Python.

$ which python

/home/takefuji/miniconda3/bin/python

If the library is not Python-related, install it by the apt command on WSL or brew
on MacOS.

First, apt should be updated and upgraded on Linux or WSL on Windows.

$ sudo apt update

$ sudo apt upgrade

Then, you can install the necessary library. For example, “wget” is a library name.
“sudo” is a superuser command.

$ sudo apt install wget

For MacOS users, you must install the brew command, then run the following com-
mand to install matplotlib library. matplotlib is a library name.

$ brew install matplotlib

In vaers, the wget command is needed.

In WSL and MacOS, you must install the X-Window. For Windows users, you should
download VcXsrv Windows X Server exe file and install it. For Mac users, you should
install XQuartz. Before running Python, you should start the X Server.

vaers was selected for this tutorial because there is no tutorial on Python set operations.
Set operations are useful to calculate the adverse effects on death by gender (male and
female), age group, and vaccine group (Moderna, Pfizer, and Novartis).

In traditional programming, the programmer must program the target software from
scratch. In open-source programming, the right libraries must be chosen from depositories
and the selected libraries are simply glued together with minimum effort. This is called
rapid open-source prototyping. vaers.py was developed within a few hours.

In other words, the skills in open-source programming lie in selecting the right libraries
from a variety of the existing libraries [13]. The more examples that are available in open-
source libraries, the easier it is for users to create the desired code.

This tutorial was written based on our experience with 19 PyPI projects:

https:/ /pypi.org/user/takefuji/ (accessed on 16 March 2022)

2. Materials and Methods

This Section includes testing the Python environment, the PyPI package of three files
(setup.py, README.md, vaers.py), how to upload a PyPI package, and how to run it.

2.1. Python Environment and How to Run Vaers

It is assumed that Python is ready to run on the terminal. We must make sure that
the system has a pip command in the PATH variable by the following command. PATH is
an environmental variable in Windows, WSL on Windows, MacOS, and Linux operating
systems that tells the shell which directories to search for executable files.

If you would like to show the PATH, run the following command:

$ echo $PATH

$ which pip

Type the following command to install vaers on WSL on Windows, MacOS, or Linux
operating systems.

$ pip install vaers

You may have several errors from the installation. Remember that pip command is not
a fully automated command so that you may need to install the following library: pandas
before installing vaers. Error messages can inform you what libraries are missing in the
current Python environment.

vaers uses VAERS datasets. You can download VAERS datasets from the following
site with Word Verification:

https://pypi.org/user/takefuji/

Int. |. Transl. Med. 2022, 2

178

https:/ /vaers.hhs.gov/eSubDownload/index.jsp?fn=2021VAERSData.zip (accessed
on 16 March 2022)

2021VAERSData.zip (172.10 MB) is composed of three csv files. Unzip 2021VAERS-
Data.zip file:

$ unzip 2021VAERSData.zip

Three csv files will be generated: 2021VAERSDATA..csv (636.80 MB), 2021VAERSSYMP-
TOMS.csv (77.18 MB), and 2021VAERSVAX.csv (56.95 MB).

If csv files are not available, the following comments will be printed in the terminal.

You need to download 2021VAERSData.zip from the following site:

https:/ /vaers.hhs.gov/eSubDownload/index.jsp?fn=2021VAERSData.zip (accessed
on 16 March 2022)

Additionally, unzip 2021VAERSData.zip,

2021VAERSDATA.csv, and 2021 VAERSVAX.csv are needed.

2.2. PyPI Package
A PyPI package needs three files including README.md, setup.py, and vaers.py.

2.2.1. README.md

The README.md file can be easily prepared by using the GitHub site. You need
to have an account on the GitHub site. When creating a new Repository, select “add a
README file”. README.md will be created when you enter the necessary content of a
new PyPI package. Remember that the image in GitHub should be linked to the global
site image address, instead of the local address. Unless the image is linked to the global
address link, the image will not be displayed on the PyPI site.

2.2.2. setup.py

The following is a template of setup.py file for creating an executable code. The shaded
10 lines should be changed for your PyPI package.

import setuptools

with open(“README.md”, “r”, encoding="utf-8”) as fh:

long_description = fh.read()

setuptools.setup(

name="vaers”,

version="0.0.3",

author="yoshiyasu takefuji”,

author_email="takefuji@keio.jp”,

description="A package for adverse effects on death using VAERS”,

long_description=long_description,

long_description_content_type="text/markdown”,

url="https://github.com/ytakefuji/safety_vaccine”, (accessed on 16 March 2022)

project_urls={

“Bug Tracker”: “https:/ /github.com/ytakefuji/safety_vaccine”,

)

classifiers=[

“Programming Language :: Python :: 37,

“License :: OSI Approved :: MIT License”,

“Operating System :: OS Independent”,

1

package_dir={"": “src”},

py_modules=[‘vaers’],

packages=setuptools.find_packages(where="src”),

python_requires=">=3.8",

entry_points = {

‘console_scripts”: [

https://vaers.hhs.gov/eSubDownload/index.jsp?fn=2021VAERSData.zip
https://vaers.hhs.gov/eSubDownload/index.jsp?fn=2021VAERSData.zip
https://github.com/ytakefuji/safety_vaccine
https://github.com/ytakefuji/safety_vaccine

Int. |. Transl. Med. 2022, 2 179

‘vaers = vaers:main’
]
b
)

2.2.3. vaers.py

vaers.py is used to calculate adverse effects or deaths due to COVID-19 associated
with vaccines.

The vaers tar file is available at the following site:

https:/ /files.pythonhosted.org/packages/76/63/ e4cf38acc1204600042bba3974837ef6
7891£76398412504dtb620839b6b /vaers-0.0.3.tar.gz (accessed on 16 March 2022)

Expand the vaers tar file by the following command:

$ wget <above link>

$ tar xvf vaers-0.0.3.tar.gz

$ cd vaers-0.0.3/src

$ cat vaers.py

vaers.py is as follows, where shaded lines are a program indicating the location of the
VAERS datasets for possible manual downloading by users.

import pandas as pd

import sys,o0s

if len(sys.argv)==2:

if os.path.exists(sys.argv [1]1+'VAERSDATA csv’) and os.path.exists(sys.argv [1]+'VAERSVAX.csv'):

print(sys.argv [1]+” data will be used”)

d=pd.read_csv(sys.argv [1]+'"VAERSDATA.csv’,low_memory=False,encoding="cp1252’)

vax=pd.read_csv(sys.argv [1]+"VAERSVAX.csv’ low_memory=False,encoding="cp1252’)

else:

print(“You need to download 2022VAERSData.zip from the following site:”)

print(“https:/ /vaers.hhs.gov/eSubDownload /index.jsp?fn="+sys.argv [1]+”VAERS-
Data.zip”) (accessed on 16 March 2022)

print(“And unzip “+sys.argv [1]+”VAERSData.zip”)

print(sys.argv [1]+”VAERSDATA .csv and “+sys.argv [1]+”VAERSVAX.csv are needed”)

os._exit(0)

else:

if len(sys.argv)==1:

if os.path.exists(2021VAERSDATA .csv’) and os.path.exists("2021VAERSVAX.csv”):

print(“2021 data will be used”)

d=pd.read_csv(‘2021VAERSDATA. .csv’, low_memory=False,encoding="cp1252’)

vax=pd.read_csv("2021VAERSVAX.csv’, low_memory=False,encoding="cp1252)

else:

print(“You need to download 2021VAERSData.zip from the following site:”)

print(“https:/ /vaers.hhs.gov/eSubDownload /index.jsp?fn=2021VAERSData.zip”)

print(“And unzip 2021VAERSData.zip”)

print(“2021VAERSDATA..csv and 2021VAERSVAX.csv are needed”)

os._exit(0)

def main():

d['DIED’] fillna(“N”,inplace=True)
deathIDs=d.loc[d.DIED=="Y’,"VAERS_ID’]
print(“total instances: “ len(d['DIED’]))
print(“total deaths” len(deathIDs))

malelDs=d.loc[d.SEX=="M",/VAERS_ID’]
femalelDs=d.loc[d.SEX=="F","VAERS_ID’]

https://files.pythonhosted.org/packages/76/63/e4cf38acc1204600042bba3974837ef67891f76398412504dfb620839b6b/vaers-0.0.3.tar.gz
https://files.pythonhosted.org/packages/76/63/e4cf38acc1204600042bba3974837ef67891f76398412504dfb620839b6b/vaers-0.0.3.tar.gz
https://vaers.hhs.gov/eSubDownload/index.jsp?fn=
https://vaers.hhs.gov/eSubDownload/index.jsp?fn=2021VAERSData.zip

Int. |. Transl. Med. 2022, 2 180

NOVIDs=vax.loc[vax.VAX_MANU=="NOVARTIS VACCINES AND DIAGNOSTICS”,
"VAERS_ID’]

print(“NOVIDs instances: “ len(NOVIDs))

deathNOV=set(deathIDs).intersection(NOVIDs)

print(“NOVIDs deaths: “,len(deathNOV))

print(“NOV death per instance”,round(len(deathNOV)/len(NOVIDs),6))

MODERNAIDs=vax.loc[vax.VAX_MANU=="MODERNA”,"VAERS_ID’]
deathMODERNA=set(deathIDs).intersection(MODERNAIDs)

PFIZERIDs=vax.loc[vax.VAX_MANU=="PFIZER\BIONTECH”,"VAERS_ID’]
deathPFIZER=set(deathIDs).intersection(PFIZERIDs)

M_P=set(MODERNAIDs).intersection(PFIZERIDs)
M_Pdeath=set(deathMODERNA).intersection(deathPFIZER)
print‘MODERNA+PFIZER:’ len(M_P))

print(MODERNA+PFIZER death:’, len(M_Pdeath))

print(MODERNA+PFIZER death per instance:’,round(len(M_Pdeath)/len(M_P),6))

MODERNAIDs=set(MODERNAIDs).difference(M_P)

print(“MODERNAIDs instances: “,len(MODERNAIDs))

deathMODERNA=set(deathIDs).intersection(MODERNAIDs)

print(“MODERNA deaths”, len(deathMODERNA))

print(“MODERNA”, round(len(deathMODERNA) /len(MODERNAIDs),6))

deathMODERNAmalelDs=set(deathMODERNA).intersection(malelDs)

print(“deathMODERNAmalelDs” len(deathMODERNAmalelDs))

death MODERNA femalelDs=set(deathMODERNA).intersection(femalelDs)

print(“deathMODERNAfemalelDs” len(deathMODERNAfemalelDs))

MODERNA femalelDs=set(MODERNAIDs).intersection(femalelDs)

print(“MODERNAfemalelDs:” len(MODERNAfemalelDs))

MODERNAmalelDs=set(MODERNAIDs).intersection(malelDs)

print(“MODERNAmalelDs:” len(MODERN AmalelDs))

print(“MODERNA female death”,round(len(deathMODERNAfemalelDs)/
len(MODERNAfemalelDs),6))

print(“MODERNA male death”,round(len(deathMODERNAmalelDs)/
len(MODERNAmalelDs),6))

PFIZERIDs=set(PFIZERIDs).difference(M_P)
print(“PFIZERIDs instances: “ len(PFIZERIDs))
deathPFIZER=set(deathIDs).intersection(PFIZERIDs)
print(“PFIZER deaths” len(deathPFIZER))
print(“PFIZER”,round(len(deathPFIZER)/len(PFIZERIDs),6))
PFIZERfemalelDs=set(PFIZERIDs).intersection(femalelDs)
print(“PFIZERfemalelDs:”,len(PFIZERfemalelDs))
PFIZERmalelDs=set(PFIZERIDs).intersection(malelDs)
print(“PFIZERmalelDs:”,len(MODERNAmalelDs))
deathPFIZERmalelDs=set(deathPFIZER).intersection(malelDs)
deathPFIZERfemalelDs=set(deathPFIZER).intersection(femalelDs)

print(“PFIZER female death”,round(len(deathPFIZERfemalelDs)/
len(PFIZERfemalelDs),6))
print(“PFIZER male death”,round(len(deathPFIZERmalelDs)/

len(PFIZERmalelDs),6))

main()

Int. |. Transl. Med. 2022, 2

181

The following Python program calculates deathIDs set mentioned in the Introduc-
tion Section.

deathIDs=d.loc[d.DIED=="Y’,"'VAERS_ID’]

Similarly, maleIDs and femalelDs can be calculated by the following program, respectively.

malelDs=d.loc[d.SEX=="M","VAERS_ID’]

femalelDs=d.loc[d.SEX=="F","VAERS_ID’]

deathPFIZER can be computed by intersecting PFIZERIDs and deathIDs as follows.
PFIZERIDs=vax.loc[vax.VAX_MANU=="PFIZER\BIONTECH"”,'VAERS_ID’]
deathPFIZER=set(deathIDs).intersection(PFIZERIDs)

2.3. How to Upload a PyPI Package

You need to generate three files (.whl file, .egg file, and .tar.gz file). Type the following
commands:

$ python setup.py install

$ python setup.py sdist bdist_wheel

In order to upload three files (covidlag-0.0.7-py3-none-any.whl, covidlag-0.0.7-py3.8.egg,
and covidlag-0.0.7 tar.gz), you need to install twine:

$ pip install twine

Before uploading three files to the PyPI site, you need to register at the following site:

https:/ /pypi.org/ (accessed on 16 March 2022)

The directory and files are as follows:

F— README.md
F— build
— dist

— setup.py
'— src
vaers.py

The following command can upload three files. The system will ask for a username
and password.

$ twine upload dist/*

When you want to update the package, you must delete all files and directories in
dist/* and build/* by the following command.

If you want to update the application, remove the old files:

$ rm -rf dist/* build /*

Then, repeat the same commands.

3. Discussion on Set Operations

This tutorial allows researchers to submit a new PyPI package and to showcase their
skills on PyPI packages around the world. All that is required is to create three files,
including uaers.py, setup.py, and README.md, by following instructions in the Materials
and Methods Section. Before submitting the new package, you should test it on your local
machine.

There are four set operations as shown in Figure 1: union, intersection, exclusive OR,
and subtraction. In Python, the union set operation of set A and set B can be calculated by
the following:

https://pypi.org/

Int. |. Transl. Med. 2022, 2 182

Union Intersection
Exclusive Or Subtraction

OO

Figure 1. Four set operations.

set(A).union(B)

Similarly, the set intersection between A and B can be operated by:

set(A).intersection(B)

ExclusiveOR operation of A and B is calculated by:

set(A). symmetric_difference(B)

Subtraction operation of A and B is calculated by:

set(A).difference(B)

In the vaers.py, set intersection operations are used.

In vaers.py, the shaded lines from the first line before def main() are used for checking
the existence of two files and, if two files exist, then they are read by pd.read_csv of pandas
library.

d=pd.read_csv(sys.argv [1]+"VAERSDATA.csv’ low_memory=False,encoding="cp1252’)

vax=pd.read_csv(sys.argv [1]+'"VAERSVAX.csv’ low_memory=False,encoding="cp1252’)

Three csv files use the common ID numbers so that deathIDs is a set of death IDs in
the dataset. The following two lines calculate the number of total instances and the number
of deaths. d is pandas data read from the “"VAERSDATA .csv’ file, while vax is pandas data
read from "VAERSVAX.csv’.

d['DIED’] fillna(“N”,inplace=True)

deathIDs=d.loc[d.DIED=="Y’,"'VAERS_ID’]

There are two types in the DIED determinant: Y or N. Therefore, the number of the
total instances is calculated by len(d['DIED’]), where len is length or size function in Python.
deathIDs indicates the number of deaths where d.DIED=="Y".

The pandas .loc function is convenient for enforcing the equal condition (==) in the
dataset.

The gender of SEX determinant plays a key role in set operating.

malelDs=d.loc[d.SEX=="M","VAERS_ID’]

femalelDs=d.loc[d.SEX=="F","VAERS_ID’]

malelDs indicates male IDs while femalelDs indicate female IDs.

Novartis IDs can be calculated by:

NOVIDs=vax.loc[vax.VAX_MANU=="NOVARTIS VACCINES AND DIAGNOSTICS”,
"VAERS_ID’]

Int. |. Transl. Med. 2022, 2

183

where VAX_MANU determinant enforces “NOVARTIS VACCINES AND DIAGNOS-
TICS”.

The following three lines show the calculation of the intersection of two sets: Moderna
and Pfizer IDs.

M_P indicates the intersection operation of two sets using the Moderna and Pfizer IDs.

MODERNAIDs=vax.loc[vax. VAX_MANU=="MODERNA"”,"VAERS_ID’]

PFIZERIDs=vax.loc[vax.VAX_MANU=="PFIZER\BIONTECH"”,'VAERS_ID’]

M_P=set(MODERNAIDs).intersection(PFIZERIDs)

M_Pdeath indicates the intersection of two sets: deathMODERNA and deathPFIZER.

M_Pdeath=set(deathMODERNA).intersection(deathPFIZER)

The following set operation indicates the intersection of two sets: deathPFIZER and
femalelDs. In other words, len(deathPFIZERfemalelDs) indicates the number of female
deaths due to the Pfizer vaccine.

deathPFIZERfemalelDs=set(deathPFIZER).intersection(femaleIDs)

Set operations are not only useful for calculating the target sets for translational
medicine, but also for efficient computing with converting O(n?) or O(n®) to O(n) time
complexity.

In order to run vaers, type the following command in the terminal. vaers will auto-
matically start to calculate with set operations (Box 1).

Box 1. The result of vaers execution.

$ vaers

total instances: 748230

total deaths 10125

NOVIDs instances: 1475
NOVIDs deaths: 2

NOV death per instance 0.001356
MODERNA+PFIZER: 996
MODERNA+PFIZER death: 5
MODERNA+PFIZER death per instance: 0.00502
MODERNAIDs instances: 325993
MODERNA deaths 4071
MODERNA 0.012488
deathMODERNAmalelDs 2330
deathMODERNA femalelDs 1657
MODERNAfemalelDs: 224687
MODERNAmalelDs: 87945
MODERNA female death 0.007375
MODERNA male death 0.026494
PFIZERIDs instances: 313773
PFIZER deaths 4488

PFIZER 0.014303
PFIZERfemalelDs: 210111
PFIZERmalelDs: 87945

PFIZER female death 0.009043
PFIZER male death 0.024402

4. Software Reproducibility via Code Ocean

Nowadays, refereed journals may ask authors to validate the reproducibility of the
proposed software as a requirement. Code Ocean is one of the publishing reproducibility
badges. You must create a new account on Code Ocean:

https:/ /codeocean.com/ (accessed on 16 March 2022)

The following steps are needed:

1. Click New Capsule.
Create Blank Capsule.

3. In Environment, click the necessary buttons. pick Python3.8.5 and pip3. Then, install
pandas and vaers using the add button.

https://codeocean.com/

Int. |. Transl. Med. 2022, 2 184

4. Click Start with Sample Files.
Fill the form of metadata.
6. Modify run.
This is an example run of vaers.
#!/usr/bin/env bash
set -ex
vaers 2022 >../results /result.txt

4

1. Click “Submit for publication” and check all items.

2. After receiving acceptance from Code Ocean, you can place the badge of the repro-
ducibility qualification in the following form in any markdown document in the
GitHub site:

['[Open in Code Ocean](https://codeocean.com/codeocean-assets/badge/open-in-

code-ocean.svg)](https:/ /codeocean.com/capsule /xxxxx/ tree) (accessed on 16 March 2022)

5. Conclusions

This is the world’s first tutorial on Python set operations for translational medicine
or medicine in general. This tutorial allows researchers to build a new PyPI package
and to showcase their skills on PyPI packages around the world. vaers.py, setup.py, and
README.md were described in detail in this paper. Code Ocean was introduced for
reproducibility requirements.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Jacquez, G.M.; Barlow, J.; Rommel, R.; Kaufmann, A.; Rienti, M., Jr.; AvRuskin, G.; Rasul, J. Residential Mobility and Breast
Cancer in Marin County, California, USA. Int. |. Environ. Res. Public Health 2014, 11, 271-295. [CrossRef] [PubMed]

2. Lu,J; He, T; Wei, G.; Wu, J.; Wei, C. Cumulative Prospect Theory: Performance Evaluation of Government Purchases of
Home-Based Elderly-Care Services Using the Pythagorean 2-tuple Linguistic TODIM Method. Int. J. Environ. Res. Public Health
2020, 17, 1939. [CrossRef] [PubMed]

3. DeVille, B.; Bawa, G.S. Text as Data: Computational Methods of Understanding Written Expression Using SAS; Wiley: Hoboken, NJ,
USA, 2021; ISBN 978-1-119-48712-8.

4. Takefuji, Y. Python Programming in PyPI for Translational Medicine. Int.]. Transl. Med. 2021, 1, 323-331. [CrossRef]

5. Available online: https:/ /vaers.hhs.gov/data/datasets.html (accessed on 16 March 2022).

6. Manzini, S.; Busnelli, M.; Colombo, A.; Franchi, E.; Grossano, P.; Chiesa, G. reString: An open-source Python software to perform
automatic functional enrichment retrieval, results aggregation and data visualization. Sci. Rep. 2021, 11, 23458. [CrossRef]
[PubMed]

7. Available online: https://pypi.org/project/vaers/ (accessed on 16 March 2022).

8. Callaway, E. Pfizer COVID Vaccine Protects against Worrying Coronavirus Variants. Nature 2021, 593, 325-326. [CrossRef]
[PubMed]

9. Gaviria, M,; Kilic, B. A network analysis of COVID-19 mRNA vaccine patents. Nat. Biotechnol. 2021, 39, 546-548. [CrossRef]
[PubMed]

10. Irwin, A.; Nkengasong, J. What It Will Take to Vaccinate the World against COVID-19. Nature 2021, 592, 176-178. [CrossRef]
[PubMed]

11. Perkel,].M. Five Reasons Why Researchers Should Learn to Love the Command Line. Nature 2021, 590, 173-174. [CrossRef]

[PubMed]

https://codeocean.com/codeocean-assets/badge/open-in-code-ocean.svg
https://codeocean.com/codeocean-assets/badge/open-in-code-ocean.svg
https://codeocean.com/capsule/xxxxx/tree
http://doi.org/10.3390/ijerph110100271
http://www.ncbi.nlm.nih.gov/pubmed/24366047
http://doi.org/10.3390/ijerph17061939
http://www.ncbi.nlm.nih.gov/pubmed/32188059
http://doi.org/10.3390/ijtm1030019
https://vaers.hhs.gov/data/datasets.html
http://doi.org/10.1038/s41598-021-02528-0
http://www.ncbi.nlm.nih.gov/pubmed/34873191
https://pypi.org/project/vaers/
http://doi.org/10.1038/d41586-021-01222-5
http://www.ncbi.nlm.nih.gov/pubmed/33963317
http://doi.org/10.1038/s41587-021-00912-9
http://www.ncbi.nlm.nih.gov/pubmed/33981074
http://doi.org/10.1038/d41586-021-00727-3
http://www.ncbi.nlm.nih.gov/pubmed/33767468
http://doi.org/10.1038/d41586-021-00263-0
http://www.ncbi.nlm.nih.gov/pubmed/33531705

Int. |. Transl. Med. 2022, 2 185

12. Reimann, H.; Hentschel, J.; Marek, J.; Huelnhagen, T.; Todiras, M.; Kox, S.; Waiczies, S.; Hodge, R.; Bader, M.; Pohlmann, A.;
et al. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception. Sci. Rep. 2016, 6, 17230.
[CrossRef] [PubMed]

13. Pintacuda, G.; Lassen, FH.; Hsu, YH.H.; Kim, A.; Martin,].M.; Malolepsza, E.; Lim,].K.; Fornelos, N.; Eggan, K.C.; Lage, K.
Genoppi is an open-source software for robust and standardized integration of proteomic and genetic data. Nat. Commun. 2021,
12, 2580. [CrossRef] [PubMed]

http://doi.org/10.1038/srep17230
http://www.ncbi.nlm.nih.gov/pubmed/26821826
http://doi.org/10.1038/s41467-021-22648-5
http://www.ncbi.nlm.nih.gov/pubmed/33972534

	Introduction
	Materials and Methods
	Python Environment and How to Run Vaers
	PyPI Package
	README.md
	setup.py
	vaers.py

	How to Upload a PyPI Package

	Discussion on Set Operations
	Software Reproducibility via Code Ocean
	Conclusions
	References

