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Methodological Concerns in Radiomics:
Addressing Bias in LASSO and SHAP for
Thyroid Tumor Analysis
To the Editor

Ying Fu et al. conducted a study that focused on intra- and peritu-
moral radiomics derived from ultrasound images to aid in the preopera-
tive differentiation of follicular thyroid adenoma, follicular carcinoma,
and follicular tumors of uncertain malignant potential [1]. Their analysis
employed the least absolute shrinkage and selection operator (LASSO)
regression to identify the most relevant features, utilizing five-fold
cross-validation to ensure the robustness of the training set. Addition-
ally, to enhance the interpretability of the model’s decisions, the
researchers analyzed the impact of the identified features on the model
output using the SHapley Additive exPlanations (SHAP).

LASSO regression raises methodological concerns that could affect
the validity of Fu et al.’s findings. As a linear and parametric method,
LASSO eliminates significant nonlinear features, introducing critical
biases [2−8]. It selects only one variable from highly correlated groups,
potentially missing key predictors. Its tendency to shrink coefficients to
zero may oversimplify models by excluding relevant variables. Addition-
ally, LASSO’s sensitivity to the regularization parameter means that
improper tuning can heavily influence performance, resulting in config-
uration-specific biases. Over 300 peer-reviewed articles have docu-
mented substantial biases in feature importance rankings derived from
machine learning models, including LASSO.

SHAP also inherits and potentially amplifies biases in feature impor-
tances from the models it explains, distorting interpretations and conclu-
sions [9−13]. The function structure “explain=SHAP(model)” reveals
SHAP’s reliance on the model. Since SHAP relies on model outputs to
determine feature importance, it inevitably inherits the model’s biases.
This can lead to misleading interpretations and undermine the reliability
of the findings. Machine learning models often prioritize prediction
accuracy, which can result in overfitting, meaning that high prediction
accuracy does not guarantee reliable feature importance rankings.

The absence of ground truth values for feature importance leads to
varied methodologies among models, necessitating careful interpreta-
tion of results. To reveal genuine relationships between target variables
and features, researchers should prioritize three key areas: understand-
ing data distribution for suitable modeling techniques, exploring statisti-
cal relationships, especially nonlinear ones, and validating findings
through hypothesis testing and p-values. A multi-method approach is
encouraged, integrating complementary techniques to capture complex
feature interactions effectively.

For inherently nonlinear, nonparametric datasets, employing Spear-
man’s rank correlation, feature agglomeration (FA), and high-variance
gene selection (HVGS) is recommended. Spearman’s correlation effec-
tively identifies both linear and monotonic relationships while minimiz-
ing the influence of outliers [14,15]. FA reduces dimensionality and
noise by clustering similar features, enhancing interpretability [16,17].
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Meanwhile, HVGS highlights highly variable features that offer biologi-
cal insights [18]. Together, these techniques provide a robust framework
for understanding variable interactions and improving the reliability of
feature importance assessments.

In conclusion, incorporating the proposed robust analytical methods
is crucial for significantly improving the reliability of Fu et al.’s findings.
By actively addressing the biases inherent in LASSO and SHAP, and pri-
oritizing genuine associations, they can not only enhance the integrity
of their work but also unveil more profound and unbiased insights into
the underlying relationships among features in thyroid tumor radiomics.
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