JOURNAL OF ARTIFICIAL NEURAL NETWORKS, 1(3), 371-401 (1994)

A Parallel Algorithm for Traffic
Control Problems in Multistage
Interconnection Networks

Nobuo Funabiki

Sumitomo Metal Industries, Ltd.
Amagasaki, Japan

Yoshiyasu Takefuji

Case Western Reserve University
Cleveland, Ohio

and

Keio University

Fujisawa, Japan

A parallel algorithm for traffic control problems in multistage interconnection
networks is presented. Since Goke and Lipovski [1] defined the class of Ban-
yan networks in 1973, multistage interconnection networks have been ex-
tensively studied and used in many applications such as telephone switching
networks, parallel processing computer networks, and integrated service dig-
ital network (ISDN). The multistage interconnection networks have two ad-
vantages over simple crossbar switches: one is that the number of switching
devices increases by O(n-log n), instead of O(n?), as it does in crossbar
switches for n-input/n-output switching systems. The other advantage is that
the fanout of switching devices is constant, as opposed to O(n) in crossbar
switches. A disadvantage, however, is that the multistage interconnection
networks not only have output blocking (which is unavoidable in crossbar
switches as well) but also have internal blocking, which degrades the network
throughput. The goal of the proposed parallel algorithm is to find conflict-
free traffic flows in order to realize the maximum or near-maximum through-
put for a given 1/O traffic demand in a given multistage interconnection net-
work. The algorithm requires n? processing elements for the traffic control

Correspondence and requests for reprints should be sent to Yoshiyasu Takefuji, Department of
Electrical Engineering and Applied Physics, Case Western University, Cleveland, OH 44106.

37

372 FUNABIKI AND TAKEFUJI

problem in an n X n multistage interconnection network. The algorithm runs
not only on a sequential machine but also on a parallel machine with max-
imally n? processors. The algorithm is verified by solving 40 problems where
the size of networks is varied from 4 x 4 to 32 x 32 and the traffic demand
density is varied from 10 to 100%. In massive simulation runs, the algorithm
finds conflict-free traffic flows in a nearly constant time with n? processors.

Banyan networks, multistage interconnection,
integrated service digital network, crossbar switch, traffic control

INTRODUCTION

Since Goke and Lipovski defined the class of Banyan networks in 1973 [1], mul-
tistage interconnection networks have been extensively studied and used in many
applications such as telephone switching networks, parallel processing computer
networks, and integrated service digital networks (ISDN) [2—29]. The multistage
interconnection networks have two major advantages over simple crossbar switches.
One is that the number of switching devices increases by O(n-log n) instead of
O(n) as it does in crossbar switches for n-input/n-output switching systems. The
other is that the fanout of switching devices is constant as opposed to O(n) in
crossbar switches.

The multistage interconnection network considered in this article consists of log,

Vv

A\ 4

(8) Direct connection state

SR i

(b) Crossed connection state

Figure 1. Two states of a 2 x 2 switching element.

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 373

n stages of 2 X 2 nonblocking switching elements where n inputs and n outputs
are connected and n is the power of 2. The network is called an n X n multistage
interconnection network. Each stage is composed of n/2 2 X 2 switching elements.
As shown in Figure 1, each switching element has two states, a direct connection
state and a crossed connection state. The multistage interconnection networks have
a self-routing function where each bit of the destination address of a packet of data
decides the state of the corresponding switching element [4]. This function implies
that one and only one path through the network between an input-output exists,
and that the path is predetermined. Several variations in the class of multistage
interconnection networks such as data manipulator (modified version) [3], omega
network [4], flip network [5], indirect binary n-cube network [6], regular SW banyan
network (with spread and fanout of 2), baseline network, and reverse baseline
network [8] have been proposed. It has been proven that they are topologically
equivalent [7, 8].

In this article, we use the reverse baseline network as the benchmark in the

SE : 2X2 Switching Element

input output
1 —| —1
SE #1
5 — 2
3 —
n/2XxXn/2 reverse 3
° baseline network SE #2
——4
° #1
®
5
SE #3
n2 — S
n2+1
® ®
nN2+2
L] ®
n2+3
n/2Xn/2 reverse ° ¢
° baseline network
° #2
®
n-1
SE #n/2
n n
1ststege - (log n- 1)-th stage log n-th stage

Figure2. Ann X nreverse baseline network generated from two n/2 x n/2 baseline
networks and n/2 2 x 2 switching elements.

374 FUNABIKI AND TAKEFUJI

internal wiring
input output
1
! — —_——— 1
SE #1 2 SE #3
2 2
3 3 3
SE #2 4 SE #4
4 4

Figure 3a. A 4 x 4 reverse baseline network.

multistage interconnection networks because it has the simplest wiring structure.
The topology of the reverse baseline network can be generated in a recursive way.
Figure 2 shows an n X n reverse baseline network that is generated from two n/2
X n/2 reverse baseline networks at up to (log n — 1)th stages and n/2 2 x 2
switching elements at the (log n)th stage. One input of each switching element is
wired with one of n/2 outputs of an n/2 x n/2 network, and another input of the
switching element is wired with one of »n/2 outputs of the other n/2 x n/2 network.
Figures 3a and 3b show a 4 X 4 reverse baseline network and a 32 x 32 reverse
baseline network, respectively.

The multistage interconnection network including the reverse baseline networks
usually has two kinds of constraints for data transmission: the output-blocking
constraint and the internal blocking constraint [27]. The output blocking constraint
means that more than one input cannot be connected with the same output si-
multaneously because it causes data collision at the output. This output-blocking
constraint is also unavoidable in crossbar switches. The internal blocking constraint
means that more than one path from inputs to outputs cannot simultaneously share
the same internal wiring in the network because it also causes data collision in the
wiring. In addition to these two constraints, we assume that the network provides
only point-to-point connections where one input cannot be connected with more
than one output. In this article this is referred to as the input-blocking constraint.
The point-to-point connection has a severer restriction than the multipoint con-
nection, which allows one input to be connected with more than one output si-
multaneously. Unless a reasonable traffic control scheme is adopted, these three
constraints degrade the network throughput.

The reverse baseline network considered here has input buffers for switching
configuration, but has no internal buffers [17]. The data in the network is trans-
mitted in the fixed length packet form. The network is also operated in cycles
synchronized by a single clock. In the first step of a communication cycle, conflict-
free traffic flows or packets are determined by the proposed algorithm. In the
second step of the cycle, the states of all switching elements are selected so that

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 375

input output

% K]]8

RIRIRIRIRIRINIRIRIRINENIRINID

Figure 3b. A 32 x 32 reverse baseline network.

the packets can be transmitted through the network. In the third step of this cycle,
the packets are finally transmitted from inputs to outputs.

A request for the packet transmission through an n X n reverse baseline network
is described by an n X n traffic matrix 7 where n inputs are connected with n
outputs. In the traffic matrix 7, each element #; represents a request for packets

376 FUNABIKI AND TAKEFUJI

to be transmitted from the ith input to the jth output; t; = 0 means that there is
no packet to be transmitted, and #; = 1 means that there is at least one packet to
be transmitted from the ith input to the jth output. The traffic matrix usually has
a random distribution of 0—1 elements, because the incoming traffic in the network
is usually randomly generated. In order to maximize the throughput of the network,
we must find the possible conflict-free traffic flows, given the requests in the traffic
matrix.

Figure 4 shows an example of a 4 x 4 traffic matrix corresponding to the 4 x
4 reverse baseline network in Figure 3a. The traffic matrix shows that there are a
total of seven packet requests to be transmitted from inputs to outputs in this
network. There are packets to be transmitted from first input to first output, from
first input to fourth output, from second input to third output, from second input
to fourth output, from third input to second output, from fourth input to second
output, and from fourth input to third output.

The problem of finding conflict-free traffic flows for the given traffic matrix in
the given multistage interconnection networks has been reported in several articles.
In 1968, Batcher proposed the first approach to this problem, an approach that is
now called the Batcher network [2]. In the Batcher network, the traffic requests
are sorted before transmission so that they can have conflict-free paths in the
network. However, the Batcher network has some drawbacks. It needs more switch-
ing elements than a multistage interconnection network itself, and it cannot avoid
input and output blockings. In 1980, Wu and Feng proposed a sequential algorithm
for this problem [8]. The Wu—Feng algorithm deletes requests that have the most
conflicts with other requests until all remaining requests can be transmitted without
conflict. Their algorithm, however, does not guarantee discovery of the maximum
throughput solution. In 1983, Agrawal proposed a sequential algorithm for the
same problem based on the graph theory [12]. In 1990, Brown and Liu proposed
a parallel algorithm and a circuit design for the same problem in Banyan networks
based on the Hopfield neural network model [27]. Although their approach is
similar to ours, their algorithm has the following disadvantages: (a) they use sigmoid
functions that result in a slower convergence time; and (b) they use the decay term
in the Hopfield neural network model, which has been proven to decrease the
probability of convergence for the system [30]; and (c) they do not discuss the time

output
I 2734

Figure 4. A 4 x 4 traffic matrix.

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 377

complexity and the convergence probability of the systems, matters that are always
problematic in neural network research.

NEURAL NETWORK APPROACH

In this article we propose a parallel algorithm based on the two-dimensional artificial
neural network model for finding conflict-free traffic flows for the traffic matrix in
the multistage interconnection network. The reverse baseline network is used as
a benchmark. The artificial neural network model is composed of a large number
of simple processing elements that are massively interconnected. The processing
clements are called neurons because they perform the function of the simplified
biological neuron. The interconnections between processing elements are deter-
mined by the motion equation:

& _aE(VH? V127 w e %y Vnn)

dt = v, M

where U, and V;; are the input and the output of the ijth processing element,
respectively. Note that E is called the computational energy function given by
considering the necessary and sufficient constraints of the problem. The goal of
using the artificial neural network model is to minimize the fabricated energy
function, E. Theorem 1 in the Appendix shows that the motion equation uses a
gradient descent method to minimize the energy function, E.

In 1943 McCulloch and Pitts proposed the first mathematical neuron model [31].
The input/output function of the ijth processing element in the McCulloch-Pitts
neuron model is given by:

Vi

]

Il

1if U, >0

0 otherwise. 2
The sigmoid neural network model for solving combinatorial optimization prob-

lems was first introduced by Hopfield and Tank [31]. The input/output function of
the ijth processing element in the sigmoid neuron model is given by:

[1 + tan h()\Ui/)]’ (3)

N =

%=

where \ is a gain parameter. In 1989, Marrakchi and Troudet proposed the Hopfield
neural network model for the crossbar switching systems, where it was verified
only in an 8 X 8 crossbar switching system [33]. In 1989, Brown proposed the
Hopfield neural network model for the multistage crossbar switching systems [34],
and in 1990, Brown and Liu also proposed the Hopfield neural network model for
the Banyan network systems [27]. However, all the previous investigators did not
discuss the time complexity and the convergence probability of the systems, matters

378 FUNABIKI AND TAKEFUJI

that are always problematic in neural network research. Takefuji and Lee proved
that the decay term in the Hopfield neural network model decreases the conver-
gence probability of the system [30]; in other words, under some conditions, the
decay term hinders the system convergence. Therefore, the decay term is not used
in our algorithm.

In order to enhance the convergence speed, the McCulloch—Pitts neural network
model has been used for finding near-optimum solutions of several NP-complete
or optimization problems [30, 35-48]. However, the McCulloch—Pitts model some-
times introduces undesirable oscillatory behavior. A hysteresis McCulloch— Pitts
neural network model, which was proposed by Takefuji and Lee, has been shown
to suppress the oscillatory behavior of neural dynamics, consequently shortening
the convergence time [40]. The input/output function of the ijth processing element
in the hysteresis McCulloch—Pitts neuron model is given by:

V.

i

1if U, > UTP (Upper Trip Point)

0if U; < LTP (Lower Trip Point)

unchanged otherwise 4)

where UTP is always larger than LTP and the initial value of V,; must be assigned
as 1 or 0. Theorem 2 in the Appendix shows that a discrete motion equation based
on the first-order Euler method forces a system composed of the hysteresis McCulloch—
Pitts neurons to converge to the local minimum [41].

We verified our parallel algorithm by solving 40 problems where the size of the
reverse baseline networks was varied from 4 X 4 to 32 x 32. The traffic matrices
are randomly generated where the density of nonzero elements is also varied from
10 to 100%. The simulation results shown and discussed in the following.

SYSTEM REPRESENTATION

Figure 5a shows the two-dimensional system representation for the traffic control
problem of the 4 X 4 traffic matrix in Figure 4. A total of 16 (=4 x 4) processing
elements are used to find conflict-free traffic flows in this problem. Generally, a
total of n* processing elements are required for the traffic control problem in a
n X n multistage interconnection network, including the reverse baseline network.
The state of the ijth processing element describes whether the request from the ith
input to the jth output has been selected for transmission in a communication cycle
or not. The processing element has two states: nonzero output and zero output.
A nonzero output signifies that the corresponding traffic request has been selected
for transmission in the cycle. A zero output signifies that the traffic request has
not been selected for transmission in the cycle and remains in the input buffer. In
Figure 5b, a black square indicates the nonzero output of a processing element
and a white square indicates the zero output of a processing element. Figure 5b

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 379

(8) 4x4 processing elements for the traffic control problem in Fig. 3

(b) The convergence of the 4X4 processing elements © a solution

Figure 5. System representation for the traffic control problem in Figure 4.

shows that the four requests of the traffic matrix elements, #;;, &4, I, and t45, are
selected for transmission in the current cycle.

As mentioned before, the reverse baseline network has three kinds of con-
straints: input-blocking constraint, output-blocking constraint, and internal block-
ing constraint. The input-blocking constraint is that each input can be simultane-
ously connected with only one output. In other words, if one and only one traffic
request among the requests from the same input is selected for transmission in a
communication cycle, it can both satisfy the input-blocking constraint and maximize
the network throughput. This condition for the Zjth processing element in an n X
n traffic matrix problem is given by:

(Aﬁl Vi = 1). 5)

The condition is zero if one processing element among n processing elements for
the ith input has nonzero output in the cycle.
The output-blocking constraint is that each output can be simultaneously con-

380 FUNABIKI AND TAKEFUJI

nected with only one input. In other words, if one and only one traffic request
among the requests to the same output is selected for transmission in a commu-
nication cycle, it can both satisfy the output-blocking constraint and maximize the
network throughput. This condition for the ijth processing element in an n X n
traffic matrix problem is given by:

(3,7, 1), 0

The condition is zero if one processing element among n processing elements for
the jth output has nonzero output in this cycle.

The internal blocking constraint is that more than one path from inputs to outputs
cannot share the same internal wiring in the network. In other words, a traffic
request must not be selected for transmission in a communication cycle if another
request sharing the same internal wirings has been selected previously in the cycle.
This condition for the ijth processing element in an n X » traffic matrix problem
is given by:

2 (7)

p=1g=1
P¥#i g#j

where s, is an element of the internal blocking matrix S,;, which describes the
internal wiring sharing states of the path from the ith input to the jth output. If
the path shares an internal wiring with the path from the pth input to the gth
output, s;,, is 1, otherwise, it is 0. If the processing elements sharing internal
wirings with the ijth processing element have nonzero output in the cycle, the
condition in Equation 7 is nonzero.

The internal blocking matrix S, is determined by the network topology. The
element s;,, in an n X n network is calculated by the following two-step procedure.
In the first step, the internal wiring number W,; at the kth stage for the commu-
nication path from the ith input to the jth output fori = 1, . . . R | T
n,andk = 1,. .., (logn — 1) is given by:

wo = (T2 - 1) [L] ®

n

2A

where the function [x] gives the minimum integer that is greater than or equal to
x. In the second step, the element Sipq Of the internal blocking matrix S, fori =
Lies sl =1,... o p~ 1,...;n,andqg = 1,...,nisgivenby:

Sipg = 1 Wiy = Wy, for3k €{1, ..., (logn — 1)} and fori + p andj # ¢

iipq

= 0 otherwise. 9)

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 381

1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
(8) Sy (b) Si2
1 2 3 A4 1 2 3 A4
1 1
2 2
3 3
4 4
(C> S13 (d) Siq.

Figure 6. Four of the internal blocking matrices for the 4 X 4 reverse baseline
network in Figure 3.

Figure 6 shows four of the 16 matrices, Sy, S, S13, and S.4, for the 4 X 4 reverse
baseline network in Figure 3a where a black square indicates the nonzero element
and a white square indicates the zero element. For example, 515, 1s 1 (black square)
because the path from the first input to first output shares the first internal wiring
with the path from the second input to the second output.

The motion equation for the ijth processing element corresponding to the ijth
traffic matrix element 7, in an n X n traffic matrix problem is given by:

du, - : ¥ >
7/: —A (Z Vi — 1) —A(Z Vig — 1) _BE Esupqqu
=1 =1 v Ly

pHi g#j
+ Ch (2 v,k> + Ch (E vk,). (10)
k=1 k=1

The first term in Equation 10 forces the output of one processing element among
n processing elements for the ith input to be nonzero. The second term forces the
output of one processing element among n processing elements for the jth output
to be nonzero. The third term is the inhibitory force, that is, it discourages the
output of the ijth processing element from being nonzero if the other processing
elements sharing internal wirings with the ijth processing element have nonzero

382 FUNABIKI AND TAKEFUJI

(8) A 4X4 traffic matrix with 5098 density

(b) Solution #1

(c) Solution #2

Figure 7. The problem of a 4 x 4 traffic matrix with 50% density and two of its
solutions.

output. The last two terms provide a procedure, known as “hill climbing,” which
allows the state of the system to escape from the local minimum, and thus increases
the probability of convergence to the global minimum. The last two terms encourage
the output of the ijth processing element to be nonzero if none of n processing
elements for the ith input and/or none of n processing elements for the Jjth output
have nonzero output. The function h(x)is 1 if x = 0, otherwise, it is 0. A, B, and
C are constant coefficients.

PARALLEL ALGORITHM

The following procedure describes the proposed parallel algorithm based on the
first-order Euler method for the traffic control problem in an n X # reverse baseline
network. The data set of the coefficients A, B, and C, UTP, LTP, U_max, U_min,
I'max1, and T_max2 are empirically determined. The procedure must be per-

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 383

(2) A 4x4 taffic matrix with 8096 density

i

(b) Solution #1

(c) Solution #2

Figure 8. The problem of a 4 x 4 traffic matrix with 80% density and two of its
solutions.

formed only for the processing elements corresponding to nonzero traffic elements
where at least one packet has been requested to be transmitted.

0. Sett=0,A=B=1,C=2,UTP =5,LTP = -5, U_max = 50, U_min
= —200, T_maxl = 500, and T_max2 = 1000. (U_max and U_min are the
constant upper and lower limits of U;(t + 1), respectively; T_max2 is the
maximum number of iteration steps.)

1. U@®fori=1,...,nandj=1,...,nare assigned uniformly randomized
initial values between 0 and U_min, and V;(f) fori = 1, ... ,nandj = 1,

., n are assigned initial values of 0.

2. Use the motion equation in Equation 10 to compute AUij(t) fori=1,...,

nandj = 1,...,n If (f < T_maxl) and [(f mod 10) < 5], then

384 FUNABIKI AND TAKEFUJI

(2) An 8X8 traffic matrix with 5096 density

(b) Solution #1

B

(¢) Solution #2

Figure 9. The problem of an 8 x 8 traffic matrix with 50% density and two of its
solutions.

AUy = -A (2 Vilt) — 1) - A (E V() — 1) B 2 2 a0V 1)

p*l qu

+ Ch (Z A(z)> + Ch (2 Vk,(z)) @11)

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 385

(a) An 8x8 traffic matrix with 8096 density

(b) Solution #1

(c) Solution #2

Figure 10. The problem of an 8 x 8 traffic matrix with 80% density and two of its
solutions.

If (t < T_max1) and [(t mod 10) = 5], then

AU,(1) = —A (i Vi) — 1> — A (i Vi () — 1> - B i 2 SipaVpa(t)

p=1¢q=
p#+i q#j

+ Ch <Z V,k(t)> + C (h Z Vk,(t)>; (12)

386 FUNABIKI AND TAKEFUJI

() A 16X16 traffic matrix with 5098 density

(b) Solution #1 (c) Solution #2

Figure 11. The problem of a 16 x 16 traffic matrix with 50% density and two of its
solutions.

If (+ = T_max1) and [(+ mod 10) < 5], then

AU,(n = -A <2 Vi) — 1) - A <Z Vi, () — 1) - B 2 2 SiipaVpa(OV (1);

PFi q#j
(13)
If (= T_max1) and [(r mod 10) = 5], then

AU, = —A (2 Valt) — 1) - A (2 Vi) = 1) - B E Z SiraVpa(D). (14)

p#+i q#j

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 387

() A 16X16 traffic matrix with 8098 density

u

(b) Solution #1 (c) Solution #2

Figure 12. The problem of a 16 x 16 traffic matrix with 80% density and two of its
solutions.

3. Compute U;(t + 1)fori =1,...,nandj=1,...,nbased on the first-
order Euler method:
Uy(t + 1) = U, + AU, (). (15)
4. If Uy(t + 1) > U_max then Uy(t + 1) = U_max. (16)
If U;(t + 1) < U_min then Uy;(¢t + 1) = U_min. (17)
5. Evaluate the values of V;j(t + 1) fori = 1,...,n andj=1,...,n:

388 FUNABIKI AND TAKEFUJI

| TT

e

T
|

() Solution #1 (c) Solution #2

Figure 13. The problem of a 32 x 32 traffic matrix with 50% density and two of its
solutions. (d) appears on the facing page number 389.

V.t +1)

Il

1if Uy(¢ + 1) > UTP

Il

0if U;(t + 1) < LTP

unchanged otherwise (18)

6. If all conflicts are resolved or t = T_max2, then terminate this procedure; else
increment ¢ by 1 and return to Step 2.

The modified motion equations in Step 2 and the range limitation of the input
U,(t + 1) in Step 4 empirically improve the convergence frequency to the global

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 389

input output

4 L

i o
&

S —
—= o S

(d) The switching configuration corresponding to the solution #1

Figure 13. (Continued).

390 FUNABIKI AND TAKEFUJI

--

-

() Solution #1 (c) Solution #2

Figure 14. The problem of a 32 x 32 traffic matrix with 80% density and two of its
solutions.

minimum [37]. When the density of the given traffic matrix is low, it may happen
that none of the processing elements for some inputs and/or none of the processing
elements for some outputs have nonzero output without conflicts. Therefore, after
T_max] iteration steps, this procedure terminates in any valid solution, which does
not always give a maximum throughput, but which does satisfy the three blocking
constraints. Even though this procedure does not always provide a maximum so-
lution, the average computation time is shorter than that of other methods.

The state of n? processing elements for the traffic control problem in an n X n
reverse baseline network can be updated synchronously or asynchronously. In the
synchronous parallel system, the states of all processing elements are updated
simultaneously. In the asynchronous parallel system, the states of all processing

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 391

Table 1. Summary of Simulation Results for the 4 X 4
Network Problems

o A B C D
10%% = 0% 503.3 94%
209% = 0% 505.6 100%%
30%% = 0% 503.1 100%%
40%% 55.6 100%% 55.6 100%%
509% 67.1 1009% 67.1 100%%
60% 67.1 100%% 67.1 100%%
70% 54.5 100%% 54.5 100%%
80%% 46.4 100%% 46.4 100%%
90% 38.8 100%% 38.8 100%%
100%% 38.8 100%% 38.8 100%%

A: the average number of iteration steps required to converge to optimum solutions
B: the probability of convergence to optimum solutions

C: the average number of iteration steps required to converge to valid solutions

D: the probability of convergence to valid solutions

elements are updated randomly. In this article the synchronous parallel system is
simulated on a sequential machine where the synchronous parallel system can be
performed on maximally #? processors. An outline for the sequential program for
simulating the synchronous parallel system follows:

Program parallel-simulator—-on-a-sequential-machine

/*** Main Program ***/
while (a set of conflicts is not empty) do
begin
/*** Updating all input values ***/
for i:=1 to n

392 FUNABIKI AND TAKEFUJI

for j:=1 to n
Ujj: =Uij+AUij;
/*** End of the first loop ***/
/*** Updating all output values ***/
for i:=1 to n
for j:=1 ton
If U;j>UTP then Vjj:=1 else if Ui j<LTP then Vjj:=0;
/*** End of the second loop ***/
end;
/*** Main Program end ***/

It is quite simple to simulate such a synchronous parallel model on a sequential
machine. In the first loop, all input values U, are sequentially updated whereas all

Table 2. Summary of Simulation Results for the 8 x 8
Network Problems

b A B C D
1098 = 0% 506.2 100%%
209% = 098 505.9 100%%
309% - 0% 503.5 1008
40% 144.8 84% 202.2 10048
50% 129.9 98%% 137.6 100%%
60%% 79.4 100%% 79.4 100%%
70%% 76.3 100% 76.3 10098
80% 68.0 100%% 68.0 100%%
90%% 66.3 99% 70.7 10098

100%% 62.8 100%% 62.8 10098

A: the average number of iteration steps required to converge to optimum solutions
B: the probability of convergence to optimum solutions

C: the average number of iteration steps required to converge to valid solutions

D: the probability of convergence to valid solutions

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 393

Table 3. Summary of Simulation Results for the 16 x 16
Network Problems

e L A B g D
10%% s 0% 512.2 92%
20%% - 0% 515.8 100%%
30%% 238.6 44% 389.0 99%
40%% 207.5 56% 340.5 1009%
50% 175.3 94% 195.2 100%%
60%% 143.8 98%% 151.0 100%%
70%% 129.7 100%% 129.7 1009
80%% 107.4 100%% 107.4 100%%
90% 97.3 99%% 101.3 100%%
100%% 84.5 99%% 84.5 99%

A: the average number of iteration steps required to converge to optimum solutions
B: the probability of convergence to optimum solutions

C: the average number of iteration steps required to converge to valid solutions

D: the probability of convergence to valid solutions

output values V;; are fixed. Then, in the second loop, all output values V; are
sequentially updated whereas all input values U are fixed. This is equivalent to
updating simultaneously the values of all inputs and outputs. In a future article,
we hope to discuss the use of an asynchronous parallel system simulator on a
sequential machine.

SIMULATION RESULTS AND DISCUSSION

The simulator based on the proposed algorithm was developed on a Macintosh
SE/30 and a Macintosh IIfx in order to verify the algorithm. We applied the
simulator to 40 problems derived by varying the sizes of reverse baseline networks
(4 x 4,8 x 8,16 x 16, and 32 X 32), and by varying the densities of nonzero

394 FUNABIKI AND TAKEFUJI

Table 4. Summary of Simulation Results for the 32 x 32
Network Problems

o A B C D
10% - 0% 668.0 919%
209% = 0% 562.6 97%
3098 277.6 18%% 473.1 98%
40% 267.1 73% 332.0 100%%
509% 233.6 88% 266.2 1009
60% 172.8 1009% 172.8 10098
7095 160.5 96%% 174.5 1009%
80% 139.8 1009% 139.8 1009%
90%% 125.5 100%% 125:5 10095
1009% 114.2 98% 122.1 1009%

A: the average number of iteration steps required to converge to optimum solutions
B: the probability of convergence to optimum solutions

C: the average number of iteration steps required to converge to valid solutions

D: the probability of convergence to valid solutions

elements in the traffic matrices from 10 to 100% in increments of 10% for each
network size. The matrix elements are randomly generated.

Figures 7—-14 show the traffic matrices and their solutions for eight of the prob-
lems. The algorithm found several solutions for each problem. Tables 1-4 show
the average number of iteration steps and the probability of convergence both to
optimum solutions and to any valid solutions; 100 simulation runs were performed
for each of the 40 problems. For each simulation run, the different initial values
of Uy (t) were randomly generated. Figure 15 shows the distribution of the number
of iteration steps required to converge to the optimum solutions for two of the
problems. The simulation results show that the average number of iteration steps
and the probability of convergence to solutions are not determined by the problem
size. Based on our simulation results, we conclude that the proposed algorithm
with n? processors finds solutions in a nearly constant time for traffic control

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 395

30

25 —

frequency

S B ; - —
0 100 200 300
the number of iteration steps

1 1 1 1 T T T T T

T 1 T 1
400 500

(2) The problem of an 88 traffic matrix with 8096 density

35 —
30

25

frequency

T % T

0 100 200 300 400
the number of iteration steps

T 1
500

(b) The problem of an 32X32 traffic matrix with 8098 density

Figure 15. The distribution of the number of iteration steps required to converge
to the optimum solutions.

396 FUNABIKI AND TAKEFUJI

problems in n X n multistage interconnection networks, including reverse baseline
networks.

CONCLUSION

A parallel algorithm for traffic control problems in multistage interconnection
networks is presented in this article. The reverse baseline network is used as the
benchmark network. The proposed parallel algorithm requires n? simple processing
elements for traffic control problems in n X n multistage interconnection networks.
The algorithm runs not only on a sequential machine but also on a parallel machine
with maximally n? processors. In 40 simulated problems, the algorithm finds so-
lutions in a nearly constant time with n* processors. The simulation results support
the consistency of the algorithm. They also show that the primary goal of finding
conflict-free traffic flows in parallel processing can be successfully achieved in terms
of the computation time and the solution quality. The algorithm is so flexible that
it can easily be modified and extended to solve traffic control problems that have
multipoint connections and/or have other types of multistage connection networks.

REFERENCES

[1] L.R. Goke and G.J. Lipovski, “Banyan Networks for Partitioning Multiprocessor
Systems,” in Proc. 1st Annual Intl. Symp. Comp. Arch., 1973, pp. 21-28.

[2] K.E. Batcher, “Sorting Networks and Their Applications,” in Proc. Spring Joint
Computer Conf., 1968, pp. 307-314.

[3] T.Y. Feng, “Data Manipulating Functions in Parallel Processors and Their Imple-
mentations,” IEEE Trans. Comp., Vol. C-23, pp. 309-318, Mar. 1974.

[4] D.H. Lawrie, “Access and Alignment of Data in an Array Processor,” IEEE Trans.
Comp., Vol. C-24, No. 12, pp. 1145-1155, Dec. 1975.

[5] K.E. Batcher, “The Flip Network in STARAN,” in Proc. Intl. Conf. Parallel Pro-
cessing, 1976, pp. 65-71.

[6] M.C. Pease, “The Indirect Binary n-Cube Microprocessor Array,” IEEE Trans. Comp.
Vol. C-26, No. 5, pp. 458-473, May 1977.

[7] H.J. Siegel and S.D. Smith, ““Study of Multistage SIMD Interconnection Networks,”
in Proc. 5th Annual Intl. Symp. Comp. Arch., 1978, pp. 223-229.

[8] C.L. WuandT.Y. Feng, “On a Class of Multistage Interconnection Networks,” IEEE
Trans. Comp., Vol. C-29, No. 8, pp. 694-702, Aug. 1980.

[9] D.M. Dias and J.R. Jump, ‘““Analysis and Simulation of Buffered Delta Networks,”
IEEE Trans. Comp., Vol. C-30, No. 4, pp. 273-282, Apr. 1981.

[10] J.H. Patel, “Performance of Processor—Memory Interconnections for Multiproces-
sors,” IEEE Trans. Comp., Vol. C-30, No. 10, pp. 771-780, Oct. 1981.

[11] T.Y. Feng, “A Survey of Interconnection Networks,” IEEE Comp., Vol. 14, pp. 12—
27, Dec. 1981.

[12] D.P. Agrawal, “‘Graph-Theoretical Analysis and Design of Multistage Interconnection
Networks,” IEEE Trans. Comp., Vol. C-32, No. 7, pp. 637-648, Jul. 1983.

[13] C.P. Kruskal and M. Snir, “The Performance of Multistage Interconnection Networks

[24]
[25]

[26]

[27]

(28]

(29]

(30]

31]
(32]
33]

(34]

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 397

for Multiprocessors,” IEEE Trans. Comp., Vol. C-32, No. 12, pp. 1091-1098, Dec.
1983.

Y.C. Jenq, “Performance Analysis of a Packet Switch Based on Single-Buffered
Banyan Network,” [EEE J. Select. Areas Comm., Vol. SAC-1, No. 6, pp. 1014-1021,
Dec. 1983.

M. Lee and C.L. Wu, “Performance Analysis of Circuit Switching Baseline Inter-
connection Networks,” in Proc. 11th Annual Intl. Symp. Comp. Arch., 1984, pp. 82—
90.

R.J. McMillen, ““A Survey of Interconnection Networks,” in Proc. IEEE Globecom
‘84, 1984, pp. 105-113.

D.M. Dias and M. Kumar, “Packet Switching in N Log N Multistage Networks,” in
Proc. IEEE Globecom 84, 1984, pp. 114-120.

A. Huang and S. Knauer, “Starlite: A Wideband Digital Switch,” in Proc. IEEE
Globecom 84, 1984, pp. 121-125.

V. Cherkassky and M. Malek, “*On Permuting Properties of Regular Rectangular
SW-Banyans,” IEEE Trans. Comp., Vol. C-34, No. 6, pp. 542-546, Jun. 1985.
1.Y. Hui and E. Arthurs, A Broadband Packet Switch for Integrated Transport,”
IEEE J. Select. Areas Comm., Vol. SAC-5, No. §, pp. 1264-1273, Oct. 1987.

U. Grag and Y.P. Huang, “Decomposing Banyan Networks for Performance Anal-
ysis,” IEEE Trans. Comp., Vol. 37, No. 3, pp. 371-376, Mar. 1988.

M. J. Narasimha, ‘“The Batcher-Banyan Self-Routing Network: Universality and Sim-
plification,” IEEE Trans. Comm., Vol. 36, No. 10, pp. 1175-1178, Oct. 1988.

H. Uematsu and R. Watanabe, “Architecture of a Packet Switch Based on Banyan
Switching Network with Feedback Loops,” IEEE J. Select. Areas Comm., Vol. 6,
No. 9, pp. 15211527, Dec. 1988.

H. Yoon and K.Y. Lee, “B-Banyan and D-Delta Networks for Multiprocessor Sys-
tems,” Parallel Distributed Computing, Vol. 7, pp. 570-582, 1989.

T.H. Lee, “Simple Implementation of Load-Sharing Banyan Network and Its Throughput
Performance,” Electronics Letters, Vol. 26, No. 1, pp. 79-80, Jan. 1990.

A. Youssef and B.W. Arden, “Equivalence Between Functionality and Topology of
Log N-Stage Banyan Networks,” IEEE Trans. Comp., Vol. 39, No. 6, pp. 829-832,
Jun. 1990.

T.X. Brown and K.H. Liu, “Neural Network Design of a Banyan Network Con-
troller,” IEEE J. Select. Areas Comm., Vol. 8, pp. 1428—1438, Oct. 1990.

M. Décina, “Progress Towards User Access Arrangements in Integrated Services
Digital Networks,” IEEE Trans. Comm., Vol. COM-30, No. 9, pp. 2117-2130, Sep.
1982.

1.S. Turner, “New Directions in Communications (Or Which Way to the Information
Age?),” IEEE Comm. Mag., Vol. 24, No. 10, pp. 8-15, Oct. 1986.

Y. Takefuji and K.C. Lee, ““Artificial Neural Networks for Four-Coloring Map Prob-
lems and K-Colorability Problems,” IEEE Trans. Circuits Systems, Vol. 38, No. 3,
pp- 326—333, Mar. 1991.

W.S. McCulloch and W.H. Pitts, ““A Logical Calculus of Ideas Immanent in Nervous
Activity,” Bulletin of Mathematical Biophysics, 5, p. 115, 1943.

J.J. Hopfield and D.W. Tank, “Neural Computation of Decisions in Optimization
Problems,” Biological Cybernetics, Vol. 52, pp. 141-152, 1985.

A. Marrakchi and T. Troudet, ‘A Neural Net Arbitrator for Large Crossbar Packet-
Switches,” IEEE Trans. Circuits Systems, Vol. 36, No. 7, pp. 1039—-1041, Jul. 1989.
T.X. Brown, “Neural Networks for Switching,” IEEE Comm. Mag., Vol. 27, pp. 72—
81, Nov. 1989.

398

[35]

36]
37]

[38]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

[48]

FUNABIKI AND TAKEFUJI

Y-P.S. Foo, Y. Takefuji, and H. Szu, “Binary Neurons with Analog Communication
Links for Solving Large-Scale Optimization Problems,” in Proc. Intl. Neural Network
Society Meeting, 1988.

Y. Takefuji and K.C. Lee, “A Near-Optimum Parallel Planarization Algorithm,”
Science, Vol. 245, pp. 1221-1223, Sep. 1989.

Y. Takefuji and K.C. Lee, ““A Parallel Algorithm for Tiling Problems,” IEEE Trans.
Neural Networks, Vol. 1, No. 1, pp. 143-145, Mar. 1990.

Y. Takefuji, C.W. Lin, and K.C. Lee, “A Parallel Algorithm for Estimating the
Secondary Structure in Ribonucleic Acids,” Biological Cybernetics, Vol. 63, No. 5,
pp. 337-340, 1990.

Y. Takefuji, L.L. Chen, K.C. Lee, and J. Huffman, ‘“‘Parallel Algorithms for Finding
a Near-Maximum Independent Set of a Circle Graph,” IEEE Trans. Neural Networks,
Vol. 1, No. 3, pp. 263-267, Sep. 1990.

Y. Takefuji and K.C. Lee, “An Artificial Hysteresis Binary Neuron: A Model Sup-
pressing the Oscillatory Behaviors of Neural Dynamics,” Biological Cybernetics, Vol.
64, pp. 353-356, 1991.

Y. Takefuji and K.C. Lee, “A Super Parallel Sorting Algorithm Based on Neural
Networks,” IEEE Trans. Circuits Systems, Vol. 37, No. 11, pp. 1425-1429, Nov.
1990.

N. Funabiki and Y. Takefuji, “A Parallel Algorithm for Spare Allocation Problems,”
IEEE Trans. Reliability, Vol. 40, No. 3, pp. 338—-346, 1991.

N. Funabiki and Y. Takefuji, ““A Parallel Algorithm for Solving the “Hip” Games,”
Neurocomputing, Vol. 3, pp. 97-106, Jul. 1991.

N. Funabiki and Y. Takefuji, *“A Parallel Algorithm for Channel Routing Problems,”
IEEE Trans. CAD/ICAS, Vol. 11, No. 4, pp. 464-474, Apr. 1992.

N. Funabiki and Y. Takefuji, “A Parallel Algorithm for Traffic Control Problems in
Three-Stage Connecting Networks,” Journal of Parallel and Distributed Computing,
in press.

K.C. Lee, N. Funabiki, and Y. Takefuji, ““A Parallel Improvement Algorithm for the
Bipartite Subgraph Problem,” IEEE Trans. Neural Networks, Vol. 3, No. 1, pp. 139-
145, Jan. 1992.

N. Funabiki, Y. Takefuji, K.C. Lee, and Y.B. Cho, “A Neural Network Parallel
Algorithm for Clique Vertex-Partition Problems,” International Journal of Electronics,
Vol. 72, No. 3, pp. 357-372, Mar. 1992.

N. Funabiki, Y. Takefuji, and K.C. Lee, “A Neural Network Model for Finding a
Near-Maximum Clique,” Journal of Parallel and Distributed Computing, Vol. 14, No.
3, pp- 340-344, Mar. 1992.

APPENDIX

dE
Theorem 1. The system always satisfies b = 0 under two conditions:

duy, oF
(Condition 1) dt’ - 7

(Condition 2) V, = f(U,)

where E is the computational Liapunov energy function and f(U;) is a nonde-
creasing function.

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 399

Proof. Consider the derivatives of the computational energy E with respect to
time ¢

dE d‘,, oE
- E “Z ey

n 75 dr v,
B ~ dU; dv, dE
= 7 dt dU, dV,,

Ay o du, .
—2’ 2 (dr) du, where —- i replaced by —— (Condition 1)

y

Il

=10 here — = 0 (Condition 2
= = s
where —; (Condition 2)

U

Q.E.D.

AE
Theorem 2. The system always satisfies A7 = 0 under two conditions:

_AE
AV,

(Condition 2) V, = f(U,)

where E is the computational Liapunov energy function and f(U,,) is the hysteresis
McCulloch-Pitts binary function:

fU;)

Il

1 if U, > UTP

I

0 if U, < LTP
unchanged otherwise.

Proof. Consider the derivatives of the computational energy E with respect to
time f:

AE AV, AE
Ar 22 At AV,

’]

h laced b B,
- At w ere is replaced by e
AU, AV,
_Z E (At AU) ()

_22<AU)<£A%>'

AU; Uyt + Ar) — Uyt AV, Vit + Ar) — V(¢
Let =~y be 1]() l]() Let i be 1/() l/()
At At AU; — Uyt + At) — Uy(®)

and sufficient to consider the following four regions:

Il

Il

It is necessary

400 FUNABIKI AND TAKEFUJI

Region 1: Uy(t) > UTP and Vi (t) = 1,

Region 2: LTP = U,(t) = UTP and V(t) = 1,
Region 3: LTP = U,(t) = UTP and V(t) = 0, and
Region 4: U,(t) < LTP and V,(t) = 0

In Region 1, we must consider four possible cases for U;(t + At):

(@) Uyt + A1) > Uy(n),

(b) LTP = U,(t + Ar) < Uy(1),

() U,(t + Af) <LTP < Uy(t), and
(d) Uy(t + Ar) = Uy(o).

AV,

y

AU,

i

= (. Therefore, éﬁ =0

In (a) and (b), V,;(t + At) = V;(1) = 1> ™

AU, AE
I 1=0>—==0
n (d), w = o
I V.t + At) = 0 S _ = >0 dAUf’<0Th f
0350 Wl == AU, negative number = e
AE
— < 0.
At

AE .
It is concluded that A = 0 is always satisfied in Region 1.

AE
Similarly, in Regions 2, 3, and 4, A7 = 0 is always satisfied. This completes the
proof.

Q.E.D.

Nobuo Funabiki received the B.Sc. degree in mathematical en-
gineering and information physics from the University of Tokyo,
Japan, in 1984, and the M.Sc. degree in electrical engineering
from Case Western Reserve University, Ohio, in 1991. He is cur-
rently a senior engineer at the System Engineering Division, Sum-
itomo Metal Industries, Ltd. Amagasaki 660, Japan. His research
interests include neural network applications for optimization
problems and process control problems, and the industrial use
of Petri net theory. He is a member of the IEEE Computer Society.

PARALLEL ALGORITHM FOR TRAFFIC CONTROL PROBLEMS 401

Yoshiyasu Takefuji is an associate professor on the faculty of
Environmental Information at Keio University (Fujisawa, 252, Ja-
pan) since 1992 and also on the faculty of Electrical Engineering
at Case Western Reserve University (Cleveland, Ohio 44106) since
1988. Before joining Case, he taught at the University of South
Florida and the University of South Carolina. He received his B.S.
(1978), M.S. (1980), and Ph.D. (1983) from Electrical Engineering
from Keio University (Japan). His research interests focus on neural
network parallel computing for solving real-world problems. He
is interested in VLSI applications and silicon architecture. He re-
ceived the National Science Foundation/Research Initiation Award
in 1989 and is an NSF advisory panelist. A member of the IEEE
Computer Society, ACM, International Neural Network Society,
and American Association for the Advancement of Science, he
received the Information Processing Society of Japan’s best paper
award in 1980. He wrote a book entitled “Neural Network Parallel
Computing,” published by Kluwer in January 1992 and coau-
thored two books Digital Circuits, (Ohm-Sha Publishers) in 1984
and Neural Network Computing, (Baifukan Publishers) in 1992.
He was an editor of the Journal of Neural Network Computing
and is an associate editor of IEEE Transactions on Neural Net-
works and Neurocomputing, and a guest editor of Journal Analog
Integrated Circuits and Signal Processing in the special issue on
analog VLSI neural networks and also guest editor of Neurocom-
puting in the special issue on neural network based optimization.
He has published more than 100 articles.

