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search method has been developed based on boosting to append classi-
fier kernels one by one in an orthogonal forward regression procedure.
Experimental results presented have demonstrated the effectiveness of
the proposed technique.
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Self-Organizing Map Algorithm Without
Learning of Neighborhood Vectors

Hiroki Kusumoto and Yoshiyasu Takefuji

Abstract—In this letter, a new self-organizing map (SOM) algorithm with
computational costO(log M) is proposed whereM is the size of a feature
map. The first SOM algorithm withO(M ) was originally proposed by Ko-
honen. The proposed algorithm is composed of the subdividing method and
the binary search method. The proposed algorithm does not need the neigh-
borhood functions so that it eliminates the computational cost in learning of
neighborhood vectors and the labor of adjusting the parameters of neigh-
borhood functions. The effectiveness of the proposed algorithm was exam-
ined by an analysis of codon frequencies of Escherichia coli (E. coli) K12
genes. These drastic computational reduction and accessible application
that requires no adjusting of the neighborhood function will be able to con-
tribute to many scientific areas.

Index Terms—Binary search, computational reduction, codon fre-
quency, Escherichia coli (E. coli), neighborhood function, self-organizing
map (SOM), subdividing method.

I. INTRODUCTION

A self-organizing map (SOM) algorithm is one of unsupervised
learning methods in the artificial neural network in order to map a
multidimensional input data set into two-dimensional (2-D) space
according to the neighborhood function. The first SOM algorithm
was originally developed by Kohonen [1] and has been used in a
variety of research areas including speech or speaker recognition
[2], mathematics [3], financial analysis [4], color quantization [5],
identification and control of dynamical systems [6], color clustering
[7], and bioinformatics [8]–[10]. Particularly in the field of bioinfor-
matics, many researchers have adopted SOM algorithm for analysis
of gene sequences as a method of clustering, visualization, or feature
extraction. Wang et al. clustered genes according to codon usage by
SOM algorithm in order to identify highly expressed and horizon-
tally transferred genes [8]. Sultan et al. and Gill et al. applied SOM
algorithm to analyze microarray data [9], [10].

When M2 is the size of a feature map, the number of compared
weight vectors for one input vector to search a winner vector by ex-
haustive search is equivalent to M2. Tree-structured SOM proposed
by Koikkalainen and Oja [11] and Truong [12] to improve the winner
search reduces the number of searching operations to O(M logM).
Kohonen proposed a new method with the total number of compar-
ison operations by O(M) [1]. Self-organizing topological tree with
O(logM) was proposed by Xu and Chang [13].

In this letter, a new SOM algorithm with O(log
2
M) is proposed

where it is composed of the subdividing method and the binary search
method. The proposed algorithm not only reduces the computational
costs but also eliminates the time-consuming parameter tuning in the
neighborhood function in SOM applications. When we use SOM for
practical analyses, one of the most time-consuming tasks for effective
learning is to adjust the values of several parameters, particularly in
neighborhood function. In addition to that, the neighborhood function
has a critical effect on the performance of SOM. In the proposed algo-
rithm, only winner vectors are trained. The proposed algorithm not to
train neighborhood vectors is completely original.
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Fig. 1. Processes of the proposed algorithm. Circles denote weight vectors. (a) Process of the subdividing method. (b) New nodes by subdivision (a part of a map).
(c) Process of the binary search method.

The proposed algorithm subdivides the map repeatedly, and new
nodes of weight vectors emerge in every step. The idea of emerging
new nodes is observed in growing SOMs such as the interpolation–ex-
trapolation method proposed by Kohonen [1] as well. In this method, an
interpolated vector is assigned a value that is calculated from two close
vectors and an interpolation coefficient, when the map is linear. With a
2-D map, the value assigned to an interpolated vector is calculated from
three vectors and two interpolation–extrapolation coefficients. On the
other hand, in the proposed algorithm, dealing 2-D SOM, the newly
emerging nodes are simply assigned the average of the closest vectors,
because the map is subdivided uniformly; new nodes emerge at the
center of two or four old nodes (see Section II-B).

The proposed algorithm was applied to a mapping of Escherichia
coli genes’ codon frequency data. In translation of gene into protein,
codons that consist of three consecutive nucleotides occurring in mes-
senger ribonucleic acid (mRNA) direct the incorporation of specific
amino acids via transfer ribonucleic acid (tRNA) with corresponding
anticodon. The combination of four types of nucleotides in the length
of three makes 64 types of codons. When these 64 types of codons code
for 20 types of amino acids, there are several synonymous codons cor-
responding to one amino acid. In bacteria, the frequency of these syn-
onymous codons usage is not random. It has been reported that there is
a positive correlation between a codon bias and the level of gene expres-
sion. Codons that correspond to abundant tRNA are preferred in highly
expressed genes. The result of mapping of the codon frequency data
was analyzed based on levels of gene expression identified by Sharp
and Li [14].

II. ALGORITHM

The proposed algorithm is composed of two methods. One is a bi-
nary search for searching winner vectors and the other is a method of
subdividing feature map gradually. At the initialization in the proposed
algorithm, there is a 2� 2 weight vector on SOM as shown in Fig. 1(a).
As the process of the proposed algorithm proceeds, the feature map is
subdivided by the subdividing method. At any subdivision stage in the

proposed algorithm, winner vectors are searched roughly at the begin-
ning and accurately at the end by the binary search method. The pro-
posed algorithm does not have the neighborhood function, because one
and only one winner–vector set is trained every stage. The procedure
is detailed in this section.

A. Initialization

The input is a data set of k-dimensional vectors XXXi(i =
1; 2; 3; . . . ; n). A feature map is a 2-D layer of M � M nodes
(M = 2m + 1;m = 1; 2; 3; . . .). M can be determined arbitrarily as
long asm is a natural number. The proposed algorithm allows to take a
big enough size map, because the size of the map does not make much
difference in computational costs in the proposed algorithm. At the
beginning, only four nodes on the coordinates (1; 1); (1;M); (M; 1),
and (M;M) have k-dimensional weight vectors WWW (x; y) whose
values are arbitrary in the extent of the distribution of input data and
other nodes do not appear as shown in Fig. 1(a). These four weight
vectors are trained by the same method as the basic SOM with total
O(1) computation.

B. Subdividing Method

The subdividing method draws center lines between all neighboring
two lines on the feature maps, so that it subdivides anM 0

�M 0 feature
map into a (2M 0

� 1)� (2M 0
� 1) feature map. Fig. 1(a) shows the

process of the subdivisions from a 2� 2 map to a M �M map. Every
new node is assigned a weight vector, whose value is the average of
the values of weight vectors of the closest nodes to the new node. The
values of the new gray nodes in Fig. 1(b) are defined by

WWW (X;Y + s)=
WWW (X;Y ) +WWW (X;Y + 2s)

2
(1)

WWW (X + s; Y )=
WWW (X;Y ) +WWW (X + 2s; Y )

2
(2)

WWW (X + s; Y + 2s)=
WWW (X;Y + 2s)+WWW (X + 2s; Y + 2s)

2
(3)

WWW (X + 2s; Y + s)=
WWW (X + 2s; Y )+WWW (X + 2s; Y + 2s)

2
(4)
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TABLE I
COMPUTATIONAL TIMES (S) AND ORDERS

WWW (X + s; Y + s)=
WWW (X;Y ) +WWW (X;Y + 2s)

4

+
WWW (X + 2s; Y )+WWW (X + 2s; Y + 2s)

4
(5)

where s denotes the distance of the neighboring two nodes after the
subdivision.

After each subdivision, winner vectors searched by the binary search
are trained with the total T (p) times. T is an overall total learning times
and p is the number of subdivision stages when the feature map size is
(2p�1 + 1)� (2p�1 + 1). This final size of the map is determined at
the initialization, and the subdivision stops at the size.

C. Binary Search

When anM 00�M 00 map (that means thatM 00�M 00 nodes on a map
have weight vectors and other nodes do not appear) and an input data
XXX(t) are given, a winner vector is searched by following procedures.

At the initialization, the search space of the map is extended by

0 � x �M and 0 � y �M: (6)

All space of the map is the subject of the search. After repeating Steps
A and B log2(M

00� 1)+1 times, respectively, the final closest vector
WWW (xc; yc) is the winner vector.

Step A: When search space is extended by

x1 � x � x2 and y1 � y � y2 (7)

the closest vector to XXX(t) is searched from four weight vectors on the
vertices of the search space

kXXX(t)�WWW (xc; yc)k = minfkXXX(t)�WWW ik

jWWW i =WWW (x1; y1);WWW (x1; y2);WWW (x2; y1);WWW (x2; y2)g: (8)

Step B: The search extent is divided into four quarters and the pro-
posed algorithm assumes that a winner vector is on a quarter space
where the closest vectorWWW (xc; yc) exits. The extent of the search space
is changed into

x
0

1 � x � x
0

2 and y
0

1 � y � y
0

2 (9)

x
0

1 = min xc;
x1 + x2

2
x
0

2 = max xc;
x1 + x2

2
(10)

y
0

1 = min yc;
y1 + y2

2
y
0

2 = max yc;
y1 + y2

2
: (11)

Fig. 1(c) shows the process of the binary search when M 0 = 5 . The
solid lines mean the searched space, the weight vectors of the black and
gray nodes are compared. The three weight vectors of the black nodes
are the closest vectors to the input vectorXXX(t) at each step and the final
closest vector WWWwin is a winner.

D. Learning

The proposed algorithm only trains winner vectors by

WWWwin(t+ 1) =WWWwin(t) + �(t)(XXX(t)�WWWwin(t)): (12)

Because neighborhood vectors do not require training, learning rate
� (0 < � < 1) does not have arguments of the coordinates of weight
vectors. Value of � can decrease in inverse proportion to time argument
t meaningfully and constant � can also work valuably.

III. SIMULATIONS AND RESULTS

A. Computational Costs

The proposed algorithm was tested by a data set consisting of 2400
three-dimensional (3-D) input vectors. The programs of the basic
SOM adapting an exhaustive search and the proposed algorithm were
written with C programming language and simulated on a PC of
Pentium III 600 MHz CPU. Five kinds of size of feature maps from
9� 9 to 129� 129 were used for comparisons. At each simulation,
total 50 000 input data chosen from 2400 data, randomly, was used for
learning of weight vectors with constant learning rate � = 0:00025.
Table I shows the computational times for each simulation. The
proposed algorithm is a batch method. In this simulation, total times
from the input of the data and the output of the results were measured.

The most of the computational costs of SOM are for searching of
the winner vectors. The number of comparison operations for finding
out the winner vectors by the proposed algorithm is 22 log2M and the
order of the computational cost of the proposed algorithm is log2M .
This order is justified by the result of computational costs as shown in
Table I.

B. Codon Frequencies of E. Coli K12 Genes

The proposed algorithm was applied to a feature extraction from E.
coli K12 genome taken from GenBank. We obtained the 59-dimen-
sional input vectors from the codon frequency of 4299 genes that con-
tain at least 100 codons. The codon frequency of the vth gene for the
t(u)th codon Rvt(u) was calculated by

Rvt(u) =
Zvt(u)

1

n(u)
n(u)
t=1 Zvt(u)

(13)

where Zvt(u) is the t(u)th synonymous codon number for the uth
amino acid and n(u) is the number of codons for the uth aminoacid.
The three-stop codons and the two codons encoding methionine (Met)
and tryptophan (Trp) were excluded.

Fig. 2(a) shows the result of the mapping by the proposed algorithm,
when frequency of iterative learning is 1 000 000, constant learning rate
0.001, and map size 33�33. X and Y axes denote a map and Z axis de-
notes the number of genes mapped on each weight vector. Fig. 2(b)–(f)
shows the breakdowns by five categories based on the expression level:
“very highly expressed genes,” “highly expressed genes,” “moderate
codon usage bias,” and “low codon usage biases, ” classified by Sharp
and Li [14], and another functional category “ribosomal protein” from
Riley’s gene catalogue [15].
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Fig. 2. Mapping results of codon frequencies of E. coli genes by the proposed algorithm. A lattice plane is a 33� 33 map. (a) Third dimension indicating the
number of genes mapped on each weight vector. Genes of four categories based on expression level: (b) very highly expressed genes, (c) highly expressed genes,
(d) moderate codon bias, and (e) low codon usage bias [14]. (f) Genes encoding ribosomal proteins [15].

All of the 4299 genes, with/without categorical attributes, were dis-
tributed across the feature map [Fig. 2(a)]. At the left corner, “very
highly expressed genes” were clustered [Fig. 2(b)], and “highly ex-
pressed genes” were mapped near the left corner [Fig. 2(c)]. Genes
with “moderate codon usage biases” were mapped on the left half of
the map, surrounding but clearly avoiding the weight vectors around
left corner: the cluster of “very highly expressed genes” [Fig. 2(e)].
Genes with “low codon usage biases” were scattered in the middle of
the map, avoiding four corners: the relatively large parts of the left,

bottom, and right sides and narrower part around the top corner of the
map [Fig. 2(f)]. These results are supporting the former works refer-
ring to the theory that a very high bias on a codon usage is seen in the
highly expressed genes and a rather low bias in other genes [14].

The mapping results showed that 14 out of 20 input vectors mapped
on coordinate (1, 1) were the “ribosomal protein” encoding genes.
“Very highly expressed genes” were most frequently mapped on this
weight vectors as well. This is consistent to the widely known fact
that many “ribosomal proteins” are expressed highly. Genes mapped



1660 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 6, NOVEMBER 2006

Fig. 3. Transmission of a learning effect through subdivisions from 2� 2 to 5� 5. Squares denote weight vectors. OnlyW is trained just one time before
the subdivisions. L denotes a variation ofW by the training. The magnitudes of the transmitted learning effects are expressed in the darkness of the squares.

on the left corner were not the majority of the entire E. coli genes
[Fig. 2(a)]. The majority of genes were mapped around where the
genes with “low codon bias” were clustered indicating the majority of
the genes may have low codon bias.

IV. DISCUSSION

The proposed algorithm does not search all weight vectors for the
winner vectors. This characteristic of the approach avoids a problem
associated with the basic SOM with a large feature map, in which two
similar input vectors that belong to the same cluster are mapped on the
distant weight vectors. The basic SOM compares all weight vectors
for an input vector. When the size of a feature map is large, it occurs
frequently that the two weight vectors at distant coordinates on the fea-
ture map have accidentally very close values. In that case, two similar
input vectors would be mapped on the distant two weight vectors, and
end up forming two separate clusters on the feature map. This problem
scarcely occurs with a small map. Even when the final feature map size
is large, this problem will not likely occur in the proposed algorithm.
The proposed algorithm starts with a 2� 2 map as shown in Fig. 2(a).
After learning with the 2� 2 map, the values of four weight vectors are
very different as is the case of the basic SOM with a small feature map.
Then, the map size is gradually multiplied by the subdividing method.
The values of the four vectors on the vertices of the feature map do not
become closer by learning, because the proposed algorithm does not
train neighboring vectors of a winner vector. After all the learning iter-
ations are finished, every input vector is mapped on the winner vector
found by the binary search. At the beginning of the binary search, a
temporary winner vector is found among the four weight vectors on
the vertices of the feature map. Because the weight vectors on the ver-
tices are supposedly different for the aforementioned reason, the same
weight vector would be selected as a temporary winner vector for the
two similar input vectors. The search space is reduced to a quarter that
includes the temporary winner vector by the subdividing method. The
values of the four vectors on the vertices of the quarter are different
also, because the new weight vectors are assigned the average values
of the neighboring weight vectors when the map is subdivided 2� 2
to 3� 3. The details of this reason are described in the next paragraph.
The same temporary winner vector for the two similar input vectors
is found. Thus the two similar input vectors would be mapped on the
weight vectors at the close distant coordinates on the feature map.

The binary search method reduces the computational costs and can
work only when it is combined with the subdividing method. Without
the subdividing method, the binary search would fail in finding out the
correct winner vectors. In the subdividing method, the new weight vec-
tors, which are created in the course of subdividing of the map, are
assigned the average values of the neighboring weight vectors. This
makes the feature map with weight vectors arranged in continuous
change. This means that the four weight vectors on the vertices of the
feature map or the search space can represent one of the quarter space
of the feature map or the search space that includes the vertex itself.

The continuous change of the weight vectors created by the subdividing
method assures the effective working of the binary search.

The proposed algorithm eliminates the time-consuming parameter
tuning in neighborhood function that has a critical effect on the perfor-
mance of SOM. In the neighborhood function, there is a term of the
distance from a winner vector that concerns the learning rates. Gener-
ally, the learning rates for the vectors close to the winner are set high
and those for vectors far from the winner are set low. This variation of
learning rates set in the neighborhood function is effectively replaced
by the subdividing method in proposed algorithm as discussed in the
next paragraph.

Fig. 3 shows transmissions of a learning effect, assuming that only
one vector W(M;M) is trained into W(M;M) + L just one time. Each
square denotes a weight vector and L denotes the variation ofW(M;M)

by the training. The learning effect L is represented by black color in
Fig. 3. In the course of a subdivision from 2� 2 map to 3� 3, the
learning effect L is transmitted to the newly emerging neighbor vec-
tors as defined in (1)–(5): L=2 is transmitted to the just adjacent two
vectors out of five new vectors and L=4 to the center vector and none
to the other two far vectors, accordingly. Magnitude of the transmitted
learning effect is expressed by the darkness of the square in Fig. 3.
When the map is subdivided into 5� 5, it is observed that the closer
to W(M;M), the more strongly the weight vectors are affected by the
learning effect. In a real application of the proposed algorithm, training
is iterated T (p) times at each subdivision stage. In the course of that,
each weight vector is affected by two factors : the training in T times’
learning and/or the transmission occuring during (p� 1) times’ subdi-
visions. Though the values of weight vectors fluctuate multiple times
in the course of training and transmissions, all the effects on weight
vectors can be simply treated as a vectorial sum. Thus, the proposed
algorithm can work effectively without the neighborhood function.

V. CONCLUSION

In this letter, a new SOM algorithm with computational cost
O(log2M) is proposed. The proposed algorithm eliminates the
time-consuming parameter tuning in neighborhood function in SOM
applications. The effectiveness of the proposed algorithm was justified
by simulation of computational costs. The results of the computation
time were examined according to the orders of computational costs.
The mapping results of the codon frequencies of E. coli K12 genes
with 33� 33 feature map showed the proposed algorithm working
effectively.
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A Cross-Layer Adaptation Scheme for Improving IEEE
802.11e QoS by Learning

Chiapin Wang, Po-Chiang Lin, and Tsungnan Lin

Abstract—In this letter, we propose a cross-layer adaptation scheme
which improves IEEE 802.11e quality of service (QoS) by online adapting
multidimensional medium access control (MAC)-layer parameters de-
pending on the application-layer QoS requirements and physical layer
(PHY) channel conditions. Our solution is based on an optimization
approach which utilizes neural networks (NNs) to learn the cross-layer
function. Simulations results demonstrate the effectiveness of our adapta-
tion scheme.

Index Terms—Adaptive algorithm, IEEE 802.11e wireless local area net-
works (WLAN), neural networks (NNs), quality of service (QoS).

I. INTRODUCTION

With the popularity of IEEE 802.11-based wireless local area net-
works (WLAN) which are capable of providing high data-rate wireless
access, the demands of multimedia services are increasing for mobile
users. To support quality of service (QoS) for multimedia applications
in the contention-based part of 802.11 medium access control (MAC),
the IEEE 802.11 standardization committee just finished a service dif-
ferentiation scheme, called enhanced distributed coordination function
(EDCF) [1]. It grants the higher class traffics such as voice and video
traffic to access the wireless medium early in most cases by differenti-
ating interframe space (IFS) and backoff parameters at MAC layer with
up to eight priorities, which are also known as traffic categories (TC)
[2]. Although this mechanism can improve QoS of real-time traffic, the
performance obtained is not optimal since the fixed EDCF parameters
cannot be adaptive to the variation of communication circumstances
such as traffic characteristics and load conditions.

There have been several works about improving IEEE 802.11e QoS
[2]–[4] by optimizing EDCF parameters based on traffic types or load
situations. Xiao [3] developed an analytical model of 802.11 EDCF
and proposed a backoff-based priority scheme for real-time services.
Tinnirello et al. [4] used simulations to investigate the behavior of
differentiating EDCF parameters under various conditions of traffic
loads and proposed a differentiation scheme based on a joined use of
minimum contention window and IFS. However, most of these works
provide solutions with the assumption of ideal channel conditions
or homogeneous link qualities among the participating hosts which
is impractical in realistic wireless environments. The transmission
qualities of hosts, e.g., bit-error rates (BER), actually are unequal at
most of the times even with a link adaptation mechanism applied on
802.11 physical layer (PHY) [1] due to limited modulation and coding
schemes (MCS) available. Under heterogeneous channel conditions,
the EDCF parameters determined with these schemes may be no more
effective to provide differentiated QoS optimally. For example, we
consider a simple transmission scenario of one real-time traffic flow
and one best-effort flow in the network. In case the two flows are with
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