
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 14, 340-344 (1992)

A Neural Network Model for Finding a Near-Maximum Clique
NUBUO FUNABIKI

Systems Engineering Division, Sumitomo Metal Industries, Ltd., Japan

YOSHIYASU TAKEFUJI

Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, Ohio 44106

AND

KUO-CHUN LEE

R&D Department, Cirrus Logic, Inc., Fremont, California 94538

A parallel algorithm based on the neural network model for
finding a near-maximum clique is presented in this paper. A maxi-
mum clique of a graph G is a maximum complete subgraph of G
where any two vertices are adjacent. The problem of finding a
maximum clique is NP-complete. The parallel algorithm requires
n processing elements for an n-vertex graph problem. The algo-
rithm is verified by solving 230 different graph problems. The
simulation results show that our computation time on a Macintosh
IIfx is shorter than that of two better known algorithms on a Cray
2 and an IBM 3090 while the solution quality is similar. The
algorithm solves a near-maximum clique problem in nearly con-
stant time on a parallel machine with n processors. o 1%~ Academic

Press, Inc.

I. INTRODUCTION

A parallel algorithm based on the neural network
model for finding a near-maximum clique of an arbitrary
graph is presented. When a graph G with a set of vertices
and a set of edges has an edge between two vertices, the
vertices are called adjacent. A clique of G is a complete
subgraph of G where any two vertices are adjacent to
each other. The maximum clique is a clique with the
largest number of vertices among cliques of G. The prob-
lem of finding a maximum clique of an arbitrary graph is
known to be NP-complete [4]. This means that in the
worst case the computing time for solving the maximum
clique problem grows exponentially with the graph size.
Figure la shows an &vertex I7-edge graph [2]. The maxi-
mum cliques are (2, 3, 4, 7) and (2, 4, 6, 7) as shown in
Figs. lb and lc.

Several sequential algorithms for the maximum clique
problem, in which the computation time not only de-
pends on the number of vertices in the graph but also on

the number of edges, have been reported. They can deal
with neither large-sized graphs nor high-density graphs.
Note that the density means the ratio between the num-
ber of edges in the n-vertex graph and that in the n-vertex
complete graph n(n - 1)/2. In 1986 Balas and Yu pro-
posed an O(n + m) time branch and bound algorithm for
an n-vertex m-edge graph that was tested only by small-
sized graphs with maximally 400 vertices and 30,000
edges [I]. In 1990 Pardalos and Phillips formulated the
maximum clique problem as a linearly constrained indefi-
nite quadratic global optimization problem [111. Although
the supercomputer Cray 2 was used, their algorithm
could not solve larger than 75vertex graph problems. It
required more than 1 h even for the 75vertex 91%-edge-
density graph problem on the Cray 2. In 1990 Carraghan
and Pardalos proposed an algorithm based on a partial
enumeration [2]. Although it could solve up to 3000-ver-
tex and over 1 ,OOO,OOO-edge graph problems on the main-
frame IBM 3090, it required a prohibitively long compu-
tation time even for a middle-sized graph problem. For
example, it took more than 1 h for a IOOO-vertex 40%-
density graph problem to be solved on the IBM 3090. In
1980 Mead and Conway proposed a parallel algorithm for
the maximum clique problem that requires O(n*) time
with maximum O(2”) processors for an n-vertex graph
problem [9].

Several applications of the maximum clique problem
for real-world problems have been reported. Balas and
Yu introduced four applications: information retrieval,
experimental design, signal transmission, and computer
vision [11. Ogawa proposed an application for the labeled
point pattern matching problem [lo]. Lecky et al. pro-
posed an application for the PLA folding problem [7].
Horaud and Skordas proposed an application for the
stereo vision correspondence problem [6].

340
0743-73 15192 $3.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

A NEURAL NETWORK MODEL 341

a

b
2 c2

3e7b7 6
FIG. 1. An &vertex 17-edge graph and the maximum cliques. (a)

The original graph. (b) The maximum clique No. 1. (c) The maximum
clique No. 2.

Whereas existing algorithms require long computation
times on expensive machines, our algorithm can solve
large-sized problems both on an inexpensive machine
such as a personal computer and on a parallel machine. It
can also be realized on an analog circuit [141. The compu-
tation time and the number of required processing ele-
ments in our algorithm do not depend on the graph den-
sity.

II. NEURAL NETWORK APPROACH

The neural network model is composed of n processing
elements (neurons) for an n-vertex graph problem. Pro-
cessing element i has an input Vi and an output Vi. The
McCulloch-Pitts neuron model [S] is adopted in this pa-
per where the input/output function is given by

Vi = 1 if Ui > 0, Vi = 0 otherwise. (1)

The change of Ui is given by the motion equation in order
to minimize the energy function E(V, , . .., V,,) which is
determined by considering the necessary and sufficient
constraints in the problem [3, 5, 12-141. The motion
equation is given by

dui dWV1, ***, vn>

dt - - 8Vi ’ (2)

It is proven that the motion equation forces the state of
the neural network system to converge to the local mini-
mum [14].

Figure 2 shows the neural network representation for
the maximum clique problem in Fig. la where a total of
eight processing elements are required. The output of
processing element i represents whether vertex i belongs
to the clique (solution) or not. The nonzero output (Vi =
1) means that vertex i belongs to the clique while the zero
output (Vi = 0) means that it does not. Figure 2 shows the
solution state corresponding to Fig. lb where the black
(white) square indicates the nonzero (zero) output. Our
approach to the maximum clique problem is to maximize
the number of vertices of a selected complete subgraph.
The output of processing element i is zero if vertex i is
not adjacent to a vertex in a complete subgraph and the
output is nonzero if vertex i is adjacent to all vertices in
the subgraph. The motion equation for processing ele-
ment i in the n-vertex graph problem is composed of two
terms, a negative force and a positive force, and is given
by

dui

dt --Ai:(l-cl,)V,+Bh(i:(l-d,)Vj+ Vi]> (3)
j=l j=l

where dij is 1 if two vertices i and j are adjacent to each
other, 0 otherwise. Note that dij = dji and dii = 1 are
always satisfied. The A-term discourages processing ele-
ment i to have the nonzero output if vertex i is not adja-
cent to a vertex chosen in a clique. The B-term encour-
ages processing element i to have the nonzero output if
vertex i is adjacent to all vertices in the clique and the
output of processing element i is zero. The function h(x)
is 1 if x = 0, 0 otherwise. A and B are constant coeffi-
cients. Because a vertex which has many adjacent verti-
ces is more likely to belong to the maximum clique, the
coefficient B is changed by the number of adjacent verti-
ces in our algorithm:

B=
the number of adjacent vertices

IZ x (density of the graph) x 20

A = 1 is used in our simulation.
(4)

Yi i+
12345670

FIG. 2. Neural network representation for the maximum clique
problem in Fig. 1.

342 FUNABIKI, TAKEFUJI, AND LEE

TABLE I TABLE III
Comparison of Simulation Results for lo-Vertex Graphs Comparison of Simulation Results for SO-Vertex Graphs

Pardalos and Phillips’s algorithm Our algorithm
on Cray 2 on Macintosh IIfx

Average Average Average Average Average Average
density clique size camp. time density clique size camp. time

0.10 2.1 0.3 0.06 2.0 0.03
0.22 2.9 0.5 0.20 2.5 0.03
0.50 3.7 0.6 0.53 3.9 0.03
0.75 5.5 0.4 0.76 5.4 0.03
0.88 7.0 0.2 0.93 7.5 0.03

Pardalos and Phillips’s algorithm Our algorithm
on Cray 2 on Macintosh IIfx

Average Average Average Average Average Average
density clique size camp. time density clique size camp. time

0.10 2.7 93.6 0.09 2.7 0.12
0.25 3.6 98.1 0.25 3.9 0.13
0.50 5.9 86.3 0.51 6.7 0.13
0.75 10.4 78.7 0.77 11.7 0.15
0.90 18.8 69.2 0.89 18.9 0.16

III. SIMULATION AND CONCLUSION

The following procedure describes the parallel algo-
rithm for finding a near-maximum clique of an n-vertex
graph based on the first-order Euler method.

0. Set t = 0.
1. The initial values of U;(t) for i = 1, . . . , n are uniformly
randomized between 0 and -20, and the initial values of
Vi(t) for i = 1, n are assigned to 0.

2.

3.

4.

5. If

or

AU,(t) = -A 2 (1 - dij)vj(t)
j=l

+ Bh (i (1 - dij)Vj(t) + V,(l)).
j=l

Ui(t + 1) = vi(t) + AUi(t). (6)

Vi(t + 1) = 1 if Ui(t + 1) > 0,

Vi(t + 1) = 0 otherwise.

Vi(t) = 1 and i (1 - d,)Vj(t) = 0
j=l

Vi(t) = 0 and i (1 - dij) vj(t) # 0
j=l

TABLE II TABLE IV
Comparison of Simulation Results for 25-Vertex Graphs Comparison of Simulation Results for 75Vertex Graphs

(5)

(7)

Pardalos and Phillips’s algorithm Our algorithm
on Cray 2 on Macintosh IIfx

Average Average Average Average Average Average
density clique size camp. time density clique size camp. time

0.09 2.6 6.7 0.09 2.4 0.04
0.24 3.4 1.3 0.25 3.3 0.04
0.49 5.5 7.3 0.53 5.3 0.05
0.75 8.7 6.7 0.78 9.3 0.06
0.91 14.2 4.7 0.91 13.8 0.06

for i = 1, IZ, then terminate this procedure else incre-
ment t by 1 and goto step 2.

The simulator has been developed on the Macintosh
IIfx in order to verify our algorithm. Four graph size
problems (10, 25, 50, and 75 vertices) with five edge den-
sities (10,25,50,75, and 90%) were simulated to compare
our algorithm with Parados’s algorithm on the Cray 2 [1 I]
where 10 different graphs were randomly generated for
each size-density and 10 simulation runs were performed
with different initial values of vi(t) for each graph prob-
lem. Tables I-IV show the results on the solution quality
and the computation time (seconds). Our computation
time on the Macintosh IIfx is shorter than theirs on the
Cray 2 while the solution quality is about the same. Note
that the speed of the Cray 2 is 125 MIPS while that of the
Macintosh IIfx is 7 MIPS. Ten randomly generated graph
size problems (100-1000 vertices) with three edge densi-
ties (25, 50, and 75%) were simulated to compare our
algorithm with Carraghan’s algorithm on the IBM 3090
[2] where 100 simulation runs were performed with differ-
ent initial values of Ui(t) for each problem. Table V
shows the average number of iteration steps to converge
to solutions, and the average/maximum numbers of verti-
ces in cliques found by our simulator. Table VI compares
the computation time (seconds) between our algorithm
on the Macintosh IIfx and Carraghan’s algorithm on the
IBM 3090. Tables I-IV and VI show that our algorithm is

Pardalos and Phillips’s algorithm Our algorithm
on Cray 2 on Macintosh IIfx

Average Average Average Average Average Average
density clique size camp. time density clique size camp. time

0.90 3.0 2283.0 0.10 2.8 0.24
0.24 4.0 3690.1 0.25 4.0 0.24
0.49 6.0 2837.1 0.51 6.9 0.30
0.75 11.0 2941.4 0.76 13.1 0.30
0.91 22.0 3879.6 0.90 23.0 0.36

A NEURAL NETWORK MODEL 343

TABLE V
Summary of Simulation Results for 30 Graph Problems

Graph size

25% density 50% density 75% density

Ave. steps Sol. quality Ave. steps Sol. quality Ave. steps Sol. quality

100 16.0 4.215 15.8 8.0/9 19.3 14.1/16
200 18.8 4.917 23.9 8.5110 23.4 15.9/18
300 28.9 5.116 19.1 8.9111 26.8 15.9/18
400 25.7 4.916 25.7 8.9111 26.8 17.7120
500 26.7 6.217 33.3 9.4111 31.3 18.9122
600 33.8 5.717 29.4 9.9112 30.4 19.5:23
700 39.8 5.416 32.4 9.9112 31.3 20.1123
800 41.1 6.017 38.2 9.9112 31.3 20.5124
900 47.9 5.817 38.8 10.2112 34.6 21.0124

1000 49.9 5.817 45.9 10.4112 34.4 21.4125

TABLE VI 6.
Comparison of the Computation Time (Seconds) for

SO%-Edge-Density Graph Problems

Graph size

Carraghan’s Our algorithm
algorithm on Macintosh

on IBM 3090 IIfx

100 0.14 0.52
200 4.16 2.7
300 46.04 4.8
400 235.68 11.2
500 1114.78 22.3
600 - 28.1
700 - 45.0
800 - 69.9
900 - 88.8

1000 - 129.8

superior to the best existing algorithms in terms of com-
putation time with about the same solution quality. We
also conclude that the proposed parallel algorithm finds a
near-maximum clique of an n-vertex graph in nearly con-
stant time on a parallel machine with n processors. The
computation time depends neither on the graph size nor
on

1.

2.

3.

4.

5.

the graph density-on a parallel machine. -

REFERENCES

Balas, E., and Yu, C. S. Finding a maximum clique in an arbitrary
graph. SIAM J. Comput. 15, 4 (Nov. 1986), 1054-1068.
Carraghan, R., and Pardalos, P. M. An exact algorithm for the
maximum clique problem. Oper. Res. Left. 9 (Nov. 1990), 375-382.
Funabiki, N., and Takefuji, Y. A parallel algorithm for spare alloca-
tion problems. IEEE Trans. Reliability 40, 3 (Aug. 1991), 338-346.
Garey, M. R., and Johnson, D. S. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, New York,
1979.
Hopfield, J. J., and Tank, D. W. Neural computation of decisions in

7.

8.

9.

10.

11.

12.

13.

14.

Horaud, R., and Skordas, T. Stereo correspondence through fea-
ture grouping and maxima1 cliques. IEEE Trans. Pattern Anal.
Mach. Intell. 11, 11 (Nov. 1989), 1168-1180.
Lecky, J. E., Murphy, 0. J., and Absher, R. G. Graph theoretic
algorithms for the PLA folding problem. IEEE Trans. CADICAS 8,
9 (Sept. 1989), 1014-1021.
McCulloch, W. S., and Pitts, W. H. A logical calculus of ideas
immanent in nervous activity. Bu//. Math. Biophys. 5 (1943) 115-
133.
Mead, C., and Conway, L. Introduction to VLSI systems. Addi-
son-Wesley, Reading, MA, 1980.
Ogawa, H. Labeled point pattern matching by Delaunay triangula-
tion and maximal cliques. Pattern Recognition 19, I (1986) 35-40.
Pardalos, P. M., and Phillips, A. T. A global optimization approach
for solving the maximum clique problem. Int. J. Comput. Math. 33
(1990), 209-216.
Takefuji, Y., and Lee, K. C. A near-optimum parallel planarization
algorithm. Science 245 (Sept. 1989), 1221-1223.
Takefuji, Y., and Lee, K. C. A parallel algorithm for tiling prob-
lems. IEEE Trans. Neural Networks 1, 1 (Mar. 1990) 143-145.
Takefuji, Y., and Lee, K. C. Artificial neural networks for four-
coloring map problems and K-colorability problems. IEEE Trans.
Circuits and Systems 38, 3 (Mar. 1991) 326-333.

NOBUO FUNABIKI received his B.S. in mathematical engineering
and information physics from the University of Tokyo in 1984 and his
M.S. in electrical engineering from Case Western Reserve University in
1991. He has published more than 10 papers on channel routing, traffic
control in three-stage/multistage connecting networks, time slot assign-
ment in TDM hierarchical switching systems, broadcast scheduling,
and spare allocation. He has worked for Sumitomo Metal Ind., Ltd., in
Japan since 1984.

KUO-CHUN LEE received his B.S. from National Tsing-Hua Uni-
versity in Taiwan (1984) his MS. from National Chiao-Tung Univer-
sity in Taiwan (1986), and his Ph.D. in electrical engineering from Case
Western Reserve University (1991). Before joining Cirrus Logic, Inc.,
in 1991, he taught at Chinese Naval Academy Taiwan (1986-1988). He
has published 20 journal papers and conference papers with Dr. Take-
fuji on neural networks. His current interests include placement and

optimization problems. Biol. Cybernet. 52 (1985), 141-152. routing in CAD and static timing analysis.

344 FUNABIKI, TAKEFUJI, AND LEE

YOSHIYASU TAKEFUJI is on the faculty of electrical engineering Foundation in 1989. He was an editor of the Journal of Neural Network
at Case Western Reserve University. Before joining Case in 1988, he Computing, is an associate editor of IEEE Transactions on Neural
taught at the University of South Florida and the University of South Networks and a guest editor of JAZCSP, has published more than 80
Carolina. He received his B.S. (1978), M.S. (1980), and Ph.D. (1983) in papers, and has coauthored two books. He is the author of Neural
electrical engineering from Keio University (Japan). He received the Network Parallel Compuring (Kluwer, 1992).
best paper award in 1980 from IPSJ, and RIA from the National Science

Received August 19, 1991; revised August 29, 1991; accepted Septem-
ber 12, 1991

