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A parallel algorithm based on the neural network model for 
finding a near-maximum clique is presented in this paper. A maxi- 
mum clique of a graph G is a maximum complete subgraph of G 
where any two vertices are adjacent. The problem of finding a 
maximum clique is NP-complete. The parallel algorithm requires 
n processing elements for an n-vertex graph problem. The algo- 
rithm is verified by solving 230 different graph problems. The 
simulation results show that our computation time on a Macintosh 
IIfx is shorter than that of two better known algorithms on a Cray 
2 and an IBM 3090 while the solution quality is similar. The 
algorithm solves a near-maximum clique problem in nearly con- 
stant time on a parallel machine with n processors. o 1%~ Academic 

Press, Inc. 

I. INTRODUCTION 

A parallel algorithm based on the neural network 
model for finding a near-maximum clique of an arbitrary 
graph is presented. When a graph G with a set of vertices 
and a set of edges has an edge between two vertices, the 
vertices are called adjacent. A clique of G is a complete 
subgraph of G where any two vertices are adjacent to 
each other. The maximum clique is a clique with the 
largest number of vertices among cliques of G. The prob- 
lem of finding a maximum clique of an arbitrary graph is 
known to be NP-complete [4]. This means that in the 
worst case the computing time for solving the maximum 
clique problem grows exponentially with the graph size. 
Figure la shows an &vertex I7-edge graph [2]. The maxi- 
mum cliques are (2, 3, 4, 7) and (2, 4, 6, 7) as shown in 
Figs. lb and lc. 

Several sequential algorithms for the maximum clique 
problem, in which the computation time not only de- 
pends on the number of vertices in the graph but also on 

the number of edges, have been reported. They can deal 
with neither large-sized graphs nor high-density graphs. 
Note that the density means the ratio between the num- 
ber of edges in the n-vertex graph and that in the n-vertex 
complete graph n(n - 1)/2. In 1986 Balas and Yu pro- 
posed an O(n + m) time branch and bound algorithm for 
an n-vertex m-edge graph that was tested only by small- 
sized graphs with maximally 400 vertices and 30,000 
edges [I]. In 1990 Pardalos and Phillips formulated the 
maximum clique problem as a linearly constrained indefi- 
nite quadratic global optimization problem [ 111. Although 
the supercomputer Cray 2 was used, their algorithm 
could not solve larger than 75vertex graph problems. It 
required more than 1 h even for the 75vertex 91%-edge- 
density graph problem on the Cray 2. In 1990 Carraghan 
and Pardalos proposed an algorithm based on a partial 
enumeration [2]. Although it could solve up to 3000-ver- 
tex and over 1 ,OOO,OOO-edge graph problems on the main- 
frame IBM 3090, it required a prohibitively long compu- 
tation time even for a middle-sized graph problem. For 
example, it took more than 1 h for a IOOO-vertex 40%- 
density graph problem to be solved on the IBM 3090. In 
1980 Mead and Conway proposed a parallel algorithm for 
the maximum clique problem that requires O(n*) time 
with maximum O(2”) processors for an n-vertex graph 
problem [9]. 

Several applications of the maximum clique problem 
for real-world problems have been reported. Balas and 
Yu introduced four applications: information retrieval, 
experimental design, signal transmission, and computer 
vision [ 11. Ogawa proposed an application for the labeled 
point pattern matching problem [lo]. Lecky et al. pro- 
posed an application for the PLA folding problem [7]. 
Horaud and Skordas proposed an application for the 
stereo vision correspondence problem [6]. 

340 
0743-73 15192 $3.00 
Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



A NEURAL NETWORK MODEL 341 

a 

b 
2 c2 

3e7b7 6 
FIG. 1. An &vertex 17-edge graph and the maximum cliques. (a) 

The original graph. (b) The maximum clique No. 1. (c) The maximum 
clique No. 2. 

Whereas existing algorithms require long computation 
times on expensive machines, our algorithm can solve 
large-sized problems both on an inexpensive machine 
such as a personal computer and on a parallel machine. It 
can also be realized on an analog circuit [ 141. The compu- 
tation time and the number of required processing ele- 
ments in our algorithm do not depend on the graph den- 
sity. 

II. NEURAL NETWORK APPROACH 

The neural network model is composed of n processing 
elements (neurons) for an n-vertex graph problem. Pro- 
cessing element i has an input Vi and an output Vi. The 
McCulloch-Pitts neuron model [S] is adopted in this pa- 
per where the input/output function is given by 

Vi = 1 if Ui > 0, Vi = 0 otherwise. (1) 

The change of Ui is given by the motion equation in order 
to minimize the energy function E(V, , . .., V,,) which is 
determined by considering the necessary and sufficient 
constraints in the problem [3, 5, 12-141. The motion 
equation is given by 

dui dWV1, ***, vn> 

dt - - 8Vi ’ (2) 

It is proven that the motion equation forces the state of 
the neural network system to converge to the local mini- 
mum [14]. 

Figure 2 shows the neural network representation for 
the maximum clique problem in Fig. la where a total of 
eight processing elements are required. The output of 
processing element i represents whether vertex i belongs 
to the clique (solution) or not. The nonzero output (Vi = 
1) means that vertex i belongs to the clique while the zero 
output (Vi = 0) means that it does not. Figure 2 shows the 
solution state corresponding to Fig. lb where the black 
(white) square indicates the nonzero (zero) output. Our 
approach to the maximum clique problem is to maximize 
the number of vertices of a selected complete subgraph. 
The output of processing element i is zero if vertex i is 
not adjacent to a vertex in a complete subgraph and the 
output is nonzero if vertex i is adjacent to all vertices in 
the subgraph. The motion equation for processing ele- 
ment i in the n-vertex graph problem is composed of two 
terms, a negative force and a positive force, and is given 
by 

dui 

dt --Ai:(l-cl,)V,+Bh(i:(l-d,)Vj+ Vi]> (3) 
j=l j=l 

where dij is 1 if two vertices i and j are adjacent to each 
other, 0 otherwise. Note that dij = dji and dii = 1 are 
always satisfied. The A-term discourages processing ele- 
ment i to have the nonzero output if vertex i is not adja- 
cent to a vertex chosen in a clique. The B-term encour- 
ages processing element i to have the nonzero output if 
vertex i is adjacent to all vertices in the clique and the 
output of processing element i is zero. The function h(x) 
is 1 if x = 0, 0 otherwise. A and B are constant coeffi- 
cients. Because a vertex which has many adjacent verti- 
ces is more likely to belong to the maximum clique, the 
coefficient B is changed by the number of adjacent verti- 
ces in our algorithm: 

B= 
the number of adjacent vertices 

IZ x (density of the graph) x 20 

A = 1 is used in our simulation. 
(4) 

Yi i+ 
12345670 

FIG. 2. Neural network representation for the maximum clique 
problem in Fig. 1. 
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TABLE I TABLE III 
Comparison of Simulation Results for lo-Vertex Graphs Comparison of Simulation Results for SO-Vertex Graphs 

Pardalos and Phillips’s algorithm Our algorithm 
on Cray 2 on Macintosh IIfx 

Average Average Average Average Average Average 
density clique size camp. time density clique size camp. time 

0.10 2.1 0.3 0.06 2.0 0.03 
0.22 2.9 0.5 0.20 2.5 0.03 
0.50 3.7 0.6 0.53 3.9 0.03 
0.75 5.5 0.4 0.76 5.4 0.03 
0.88 7.0 0.2 0.93 7.5 0.03 

Pardalos and Phillips’s algorithm Our algorithm 
on Cray 2 on Macintosh IIfx 

Average Average Average Average Average Average 
density clique size camp. time density clique size camp. time 

0.10 2.7 93.6 0.09 2.7 0.12 
0.25 3.6 98.1 0.25 3.9 0.13 
0.50 5.9 86.3 0.51 6.7 0.13 
0.75 10.4 78.7 0.77 11.7 0.15 
0.90 18.8 69.2 0.89 18.9 0.16 

III. SIMULATION AND CONCLUSION 

The following procedure describes the parallel algo- 
rithm for finding a near-maximum clique of an n-vertex 
graph based on the first-order Euler method. 

0. Set t = 0. 
1. The initial values of U;(t) for i = 1, . . . , n are uniformly 
randomized between 0 and -20, and the initial values of 
Vi(t) for i = 1, . . . . n are assigned to 0. 

2. 

3. 

4. 

5. If 

or 

AU,(t) = -A 2 (1 - dij)vj(t) 
j=l 

+ Bh (i (1 - dij)Vj(t) + V,(l)). 
j=l 

Ui(t + 1) = vi(t) + AUi(t). (6) 

Vi(t + 1) = 1 if Ui(t + 1) > 0, 

Vi(t + 1) = 0 otherwise. 

Vi(t) = 1 and i (1 - d,)Vj(t) = 0 
j=l 

Vi(t) = 0 and i (1 - dij) vj(t) # 0 
j=l 

TABLE II TABLE IV 
Comparison of Simulation Results for 25-Vertex Graphs Comparison of Simulation Results for 75Vertex Graphs 

(5) 

(7) 

Pardalos and Phillips’s algorithm Our algorithm 
on Cray 2 on Macintosh IIfx 

Average Average Average Average Average Average 
density clique size camp. time density clique size camp. time 

0.09 2.6 6.7 0.09 2.4 0.04 
0.24 3.4 1.3 0.25 3.3 0.04 
0.49 5.5 7.3 0.53 5.3 0.05 
0.75 8.7 6.7 0.78 9.3 0.06 
0.91 14.2 4.7 0.91 13.8 0.06 

for i = 1, . . . . IZ, then terminate this procedure else incre- 
ment t by 1 and goto step 2. 

The simulator has been developed on the Macintosh 
IIfx in order to verify our algorithm. Four graph size 
problems (10, 25, 50, and 75 vertices) with five edge den- 
sities (10,25,50,75, and 90%) were simulated to compare 
our algorithm with Parados’s algorithm on the Cray 2 [ 1 I] 
where 10 different graphs were randomly generated for 
each size-density and 10 simulation runs were performed 
with different initial values of vi(t) for each graph prob- 
lem. Tables I-IV show the results on the solution quality 
and the computation time (seconds). Our computation 
time on the Macintosh IIfx is shorter than theirs on the 
Cray 2 while the solution quality is about the same. Note 
that the speed of the Cray 2 is 125 MIPS while that of the 
Macintosh IIfx is 7 MIPS. Ten randomly generated graph 
size problems (100-1000 vertices) with three edge densi- 
ties (25, 50, and 75%) were simulated to compare our 
algorithm with Carraghan’s algorithm on the IBM 3090 
[2] where 100 simulation runs were performed with differ- 
ent initial values of Ui(t) for each problem. Table V 
shows the average number of iteration steps to converge 
to solutions, and the average/maximum numbers of verti- 
ces in cliques found by our simulator. Table VI compares 
the computation time (seconds) between our algorithm 
on the Macintosh IIfx and Carraghan’s algorithm on the 
IBM 3090. Tables I-IV and VI show that our algorithm is 

Pardalos and Phillips’s algorithm Our algorithm 
on Cray 2 on Macintosh IIfx 

Average Average Average Average Average Average 
density clique size camp. time density clique size camp. time 

0.90 3.0 2283.0 0.10 2.8 0.24 
0.24 4.0 3690.1 0.25 4.0 0.24 
0.49 6.0 2837.1 0.51 6.9 0.30 
0.75 11.0 2941.4 0.76 13.1 0.30 
0.91 22.0 3879.6 0.90 23.0 0.36 
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TABLE V 
Summary of Simulation Results for 30 Graph Problems 

Graph size 

25% density 50% density 75% density 

Ave. steps Sol. quality Ave. steps Sol. quality Ave. steps Sol. quality 

100 16.0 4.215 15.8 8.0/9 19.3 14.1/16 
200 18.8 4.917 23.9 8.5110 23.4 15.9/18 
300 28.9 5.116 19.1 8.9111 26.8 15.9/18 
400 25.7 4.916 25.7 8.9111 26.8 17.7120 
500 26.7 6.217 33.3 9.4111 31.3 18.9122 
600 33.8 5.717 29.4 9.9112 30.4 19.5:23 
700 39.8 5.416 32.4 9.9112 31.3 20.1123 
800 41.1 6.017 38.2 9.9112 31.3 20.5124 
900 47.9 5.817 38.8 10.2112 34.6 21.0124 

1000 49.9 5.817 45.9 10.4112 34.4 21.4125 

TABLE VI 6. 
Comparison of the Computation Time (Seconds) for 

SO%-Edge-Density Graph Problems 

Graph size 

Carraghan’s Our algorithm 
algorithm on Macintosh 

on IBM 3090 IIfx 

100 0.14 0.52 
200 4.16 2.7 
300 46.04 4.8 
400 235.68 11.2 
500 1114.78 22.3 
600 - 28.1 
700 - 45.0 
800 - 69.9 
900 - 88.8 

1000 - 129.8 

superior to the best existing algorithms in terms of com- 
putation time with about the same solution quality. We 
also conclude that the proposed parallel algorithm finds a 
near-maximum clique of an n-vertex graph in nearly con- 
stant time on a parallel machine with n processors. The 
computation time depends neither on the graph size nor 
on 

1. 

2. 

3. 

4. 

5. 

the graph density-on a parallel machine. - 
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