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Abstract: Recent indoor air quality studies show that even 1000 parts per million (ppm) concentration
of Carbon Dioxide (CO2) has an adverse effect on human intellectual activities. Therefore, it is required
to keep the CO2 concentration below a certain value in a room. In this study, in order to analyze
the diffusion tendency of carbon dioxide by breathing, we constructed a simultaneous multi-point
sensing system equipped with a carbon dioxide concentration sensor to measure indoor environment.
Furthermore, it was evaluated whether the prediction model can be effectively used by comparing
the prediction value by the model and the actually measured value from the sensor. The experimental
results showed that CO2 by exhaled breathing diffuses evenly throughout the room regardless of
the sensor’s relative positions to the human test subjects. The existing model is sufficiently accurate
in a room which has above at least a 0.67 cycle/h ventilation cycle. However, there is a large gap
between the measured and the model’s predicted values in a room with a low ventilation cycle,
and that suggests a measurement with a sensor still is necessary to precisely monitor the indoor air
quality.

Keywords: carbon dioxide concentration sensor; simultaneous multipoint sensing; indoor air quality,
indoor measurement

1. Introduction

With the spread and development of the Internet of Things (IoT), highly accurate and compact
sensor devices for environmental measurement have been developed and can be used in a variety
of situations. These sensor devices are used not only for specific facilities, but also for measuring
and adjusting the environment of places where people normally live, such as smart homes and smart
offices [1,2]. By quantifying the state of the environment with these sensor devices, it has become
possible to objectively evaluate changes in the environment that cannot be captured by human senses.
However, there are many factors that should be evaluated in a person’s living environment, and it is
difficult to manage all of them [3], such as tobacco smoking and ambient particulate matter pollution.
Therefore, it is necessary to identify and control the factors that may exist in any living environment to
support people’s lives. In this study, we focus on the concentration of carbon dioxide (CO2) in a room.
Since CO2 is generated and accumulated by human activity, it is necessary to prevent a decrease in
the quality of human intellectual activity due to an increase in CO2 concentration [4]. Furthermore,
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according to the study by U. Satish et al. [5], it is considered to be “Relative to 600 ppm (parts per
million), at 1000 ppm CO2, moderate and statistically significant decrements occurred in six of nine
scales of decision-making performance.” Thus, even concentrations as low as 1000 ppm have been
shown to have an adverse effect on human decision-making. For this purpose, it is necessary to
predict the change in CO2 concentration and control it so that the concentration in the room is below
constant. In order to maintain the quality of intellectual activity in human interaction in a room,
we analyze the diffusion tendency of CO2 in exhaled air and investigate a model to predict CO2

concentration. Specifically, in this study, we measured and analyzed how CO2 diffused in a low
concentration zone, which had not been noticed until now, by simultaneous multipoint sensing.
In addition, we selected a prediction model from the experimental results and compared the prediction
model of CO2 concentration in the existing room with the measurement device in the actual room in
three different sized rooms on the same basement level of the same building, and verified whether the
existing prediction model is applicable to the measurement method using the measurement device.

2. Related Research

The measurement of CO2 concentration has been around for a long time, even before the
development of sensor technology, and the measurement of CO2 using plants was reported as far
back as 1990 [6]. CO2 concentration is also used as a measure of focus, and it has been reported
that there is a correlation between CO2 concentration, the discomfort index and the number of
blinks, which is a measure of ability to concentrate [7]. In recent years, with the development of
the IoT, CO2 concentration sensors have become smaller and smaller, and they are used as devices
for environmental measurement such as forest fires [8]. These sensor devices equipped with CO2

concentration sensors and gas sensors are installed on the university campus to verify the air quality [9].
Similar to the present study, Piotr Batoga et al. [10] reported a study in which the concentration
was measured using simultaneous multipoint sensing to predict the CO2 concentration. In this
report, the CO2 concentration in the bedroom during sleep was predicted to be about 150 ppm by
using a Computational Fluid Dynamics (CFD) simulation, but as a result of measuring the CO2

concentration by using a CO2 concentration sensor, the CO2 concentration exceeded 3000 ppm.
The CO2 concentration in the ambient air was about 400 ppm, indicating that the CO2 concentration in
the bedroom was more than 7 times higher than the outside air. Therefore, simulation like CFD is not
always effective, so it is necessary to make actual measurements using a measurement device.

3. System Overview

3.1. System Configuration

In this study, we analyzed the diffusion of CO2 generated by human breath by simultaneously
measuring CO2 concentrations at multiple locations in a studio. A single measurement device
can only measure locally because it measures the atmospheric CO2 concentration that enters the
measurement section in the sensor through the nonwoven fabric. Therefore, to accurately measure
the distribution of CO2 concentration in space, it is necessary to use multiple measurement devices
to simultaneously sense CO2 diffusion at multiple points. Each measurement device is connected
to the RaspberryPi3 via an on-board Bluetooth module and acquires data every minute. We used
the Universal Asynchronous Receiver/Transmitter (UART) for serial communication between the
RaspberryPi3 and the measurement device. Six measurement devices were able to be stably connected
to RaspberryPI3 per one. In this study, two RaspberryPi3 were used to verify the CO2 diffusion.
Figure 1 shows a concept diagram of the system created.
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Figure 1. System concept diagram.

3.2. Measurement Device

In this study, a CDM7160 CO2 sensor module provided by Figaro was used to measure CO2

concentration and a temperature sensor, BME280, was used to check the temperature change in the
room. The reason for selecting the CDM7160 CO2 sensor module is that the data output is digital
rather than analog, which is often used in conventional CO2 concentration sensors. The accuracy is
±50 ppm plus 3% of the output value in the range of 300 to 5000 ppm, which is higher than that of
conventional sensors [11]. The measurement range is limited to a single point in the sensor because
the CO2 concentration in the atmosphere that enters the measurement part of the sensor through the
nonwoven fabric is measured. The accuracy of the BME280 is ±1 ◦C in the range of −45 to 85 ◦C.
Figure 2 shows the external view of the measurement device.

Figure 2. Measurement device appearance.

To confirm that the acquired data were correctly obtained, we compared and corrected
12 measurement devices using the IES-5000 type indoor environment measurement set developed by
Shibata Kagaku Co [12]. We used a two-point calibration curve [13] with two gases, 500 ppm and
1500 ppm, to make adjustments, and the sensor outputs of all the measurement devices were corrected
to be within the error range.
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4. Analysis of CO2 Diffusion Trend to the Position of the Subject and the Measurement Device

4.1. Environment and Methods

In this chapter, we analyze the diffusion of CO2 generated by human breath by simultaneously
measuring CO2 concentrations at multiple locations in a room. All experiments in this chapter were
performed in the same studio with a volume of 197.0 m3. During the experiment, all door gaps,
vents and openings were sealed up to prevent the CO2 concentration from being biased by the outside
air and the studio’s ventilation system is turned off (only natural ventilation). In addition, the studio is
located in the basement, and there are no windows or other openings in contact with the outside air.
The reason for the use of the basement is to minimize the effect of the air entering through the gaps in
the windows on the amount of ventilation, depending on the weather conditions of that day. After the
experiment, the door to the outside was opened, the studio’s ventilation system was activated and the
subjects left and were ventilated for 60 min. The number of subjects in the studio was decided to be
three to four because we could place the subjects evenly in the four corners of the studio due to the
nature of the experiment. All the subjects were males over 18 years of age and were instructed to
breathe steadily in a seated position during the experiment and were allowed to speak to some extent.
The duration of the experiment was 60 min for all conditions, and the mean value of the experiment
was used as the experimental result. After the experiment, we ventilated the room sufficiently and
confirmed that the CO2 concentration in the room had decreased to the same level as the outside air
in the building (about 400 to 500 ppm according to the measurement device) before starting the next
experiment. To show that there was no sudden temperature change in the room, the room temperature
was measured every minute during the experiment. The experiments in this chapter are referred to
as Case 1, Case 2 and Case 3. In Case 1, we measured and analyzed how the distance between the
subject and the measurement device. The height difference between the subject and the measurement
device in Case 2 and the position of several subjects in Case 3, respectively, affect the diffusion of CO2

in the room.
In Case 1, the measurement devices were placed in a straight line from three subjects at 1 m

intervals, and the distance between subjects was 30 cm. The arrangement of the subjects and devices
in Case 1 is shown in Figure 3, where the measurement device was placed on the floor and the height
of the device was set at 0 m.

Figure 3. Position of subjects and measurement devices in Case 1.

In Case 2, three subjects were placed at the edge of the room, and the measurement devices were
placed at six locations at a height of 0 m (floor), 1 m and 2 m, and 1 m and 8 m away from the subjects,
respectively. The arrangement of the subjects and devices in Case 2 is shown in Figure 4.
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Figure 4. Position of subjects and measurement devices in Case 2.

In Case 3, four subjects were placed in the four corners or the center of the room. Case 3a is the
experiment in which subjects are placed in the four corners of the room, and Case 3b is the experiment
in which subjects are placed in the center. The measurement devices were placed at 2 m intervals on
4 × 3 blocks to cover the room, and the distance between subjects was set to 8 m or 6.5 m when subjects
were placed at the four corners. The measurement device was placed on the floor and its height was
set at 0 m. The distance between subjects was set at 1 m when the subjects were placed in the center of
the study. The arrangement of the subjects and devices in the experiment is shown in Figure 5.

Figure 5. Position of subjects and measurement devices in Case 3a and Case 3b.

4.2. Results

For all graphs in this section, the x-axis shows the time elapsed and the y-axis shows the amount
of change in CO2 concentration from the the beginning of the experiment. The experimental results of
Case 1 are shown in Figure 6.
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Figure 6. CO2 concentration change in Case1. DX means Device ID.

Figure 6 shows that an increase in CO2 concentration of about 150 to 200 ppm at almost the
same time interval at all distances and the final CO2 concentration in the room was about 700 ppm.
The amount of change was within the error range of the measurement sensor.

The experimental results for the devices with a distance of 1 m from the subjects in Case 2 are
shown in Figure 7, and those for the devices with a distance of 8 m are shown in Figure 8.

Figure 7. Change in CO2 concentration at 1 m away from subjects, in Case 2.

Figure 8. Change in CO2 concentration at 8 m away from subjects, in Case 2.

As shown in Figures 7 and 8, the amount of change in CO2 concentration increased with time,
regardless of the difference between high and low, and increased from 200 to 250 ppm in 60 min after the
start of the measurement and the final CO2 concentration in the room was about 750 ppm. In Figure 8,
where the distance from the subject is 8 m, there is a temporary increase in CO2 concentration beyond
the error range of the measurement device, but by the next measurement, the CO2 concentration
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has decreased to the same level as that of other sensors. As in Case 1, the amount of change was
within the error range of the measurement sensor, so it is considered that there was no change in CO2

concentration due to the difference in height.
The experimental results of Case 3a and Case 3b are shown in Figures 9 and 10, respectively,

with the subjects in the four corners and in the center, respectively. The changes in the final CO2

concentration in Case 3 are shown in Table 1. The devices in boldface in Table 1 show the top six
devices with the largest change in CO2 concentration in each experiment.

Figure 9. Change in CO2 concentration in Case3a. DX means Device ID.

Figure 10. Change in CO2 concentration in Case3b. DX means Device ID.

Table 1. Change in CO2 concentration at the end of Case 3.

Measurement Devices ID Case 3a (ppm) Case 3b (ppm)
D1 221.0 241.0
D2 254.0 246.5
D3 241.5 251.5
D4 269.0 271.0
D5 243.5 237.0
D6 224.5 214.0
D7 265.0 294.5
D8 286.5 257.0
D9 255.5 236.0

D10 284.5 287.0
D11 263.5 276.0
D12 274.5 282.5
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As shown in Figures 9 and 10, all the sensors finally showed an increase in concentration of
200–300 ppm, and the final CO2 concentration in the room was about 800 ppm. As Table 1 shows,
the top six devices (D4, D7, D8, D10, D11 and D12) with the largest changes in CO2 concentrations in
Case 3a and Case 3b were the same in both conditions, although the CO2 concentrations seemed to
vary depending on the location of the measurement devices. In addition, when comparing the changes
in the final CO2 concentration for each measurement device under the conditions of Case 3a and Case
3b, the changes are within the error range of the measurement sensor for all devices. Therefore, it is
considered that the position of a person has no effect on CO2 diffusion in the room.

The mean indoor temperature during the experiment was 24 ◦C for both of the two experiments
conducted for Case 1, 20 and 21 ◦C for Case 2 and 21 and 22 ◦C for Case 3, and did not change by
more than ±2 ◦C for all conditions.

5. Comparison of Predicted and Measured Values Using a Prediction Model

5.1. Prediction Model

The change over time in the concentration of gas in a room from its initial state is generally
expressed by the following Equation (1), when the amount of gas generated is constant [14].

C = C0 +
M

NV
(1 − e−Nt) (1)

C is concentration of CO2 in indoor air (mg/m3), C0 is concentration of target air outside (mg/m3),
t is elapsed time (h), V is studio volume (m3), M is amount of gas generated (mg/h), N is number of
ventilation cycle (cycle/h). The ventilation cycle is defined as the ventilation amount (m3/h) of a room
divided by the volume (m3).

In this study, there are deals with CO2 diffused from human exhaled air, and the concentration is
expressed as volume concentration (ppm). Therefore, if we rearrange the equation to align the units,
we obtain Equation (2) (Seidel’s equation).

C = (C0 +
nE
NV

(1 − e−Nt))× 106 (2)

C is concentration of CO2 in indoor air (ppm), n is number of subjects in the room, E is CO2 emission
per subject (m3/h).

In the prediction model, the concentration of CO2 increases in an almost linear manner at the
beginning of the measurement, but as time passes, it ascends to a constant concentration. In this study,
Equation (2) is used as a prediction model for the CO2 concentration in a room, and the predicted CO2

concentration until the steady state is reached is evaluated by comparing the predicted values with the
actual values measured by simultaneous multipoint sensing of the CO2 concentration sensor.

5.2. Environment and Methods

In this chapter, we compare and analyze the change in CO2 concentration measured by the
measurement device and the change in concentration by CO2 concentration prediction model
described in chapter 3, when the room volume and the number of subjects are different. Essentially,
the prediction model for gas concentration is predicated on steady-state or instantaneous uniform
diffusion, and since human exhalation is not instantaneous uniform diffusion, it does not satisfy that
prerequisite. However, from the results of the experiments in Section 4, it was confirmed that the CO2

concentration in the room increased uniformly within the error range of the sensor under the condition
of one-minute intervals. Based on these experimental results, we considered that the concentration in
the room increased near the measurement point in the same way as instantaneous uniform diffusion,
albeit quasi-uniformly, and applied the prediction model. In the experiment, we measured the increase
of CO2 concentration in three rooms of different sizes (large, medium and small studios) on the same
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basement level in the same building, where two, four and six subjects waited for the experiment.
The duration of the experiment was set at 30 min, and the volume of the studio was 197.0 m3 for the
large studio, 48.5 m3 for the medium studio and 22.2 m3 for the small studio, with heights of 3.8 m,
2.5 m and 3 m, respectively. Six measuring devices were installed in the room, and considering the
sensor error, the change of CO2 concentration in the room was defined as the average of four values
excluding the two measuring devices with the maximum and minimum increase in the final CO2

concentration. The measurement device was placed on the floor and its height was set at 0 m. Figure 11
shows the arrangement of the subjects in each room and their distances.

Figure 11. Position of subjects and measurement devices in three conditions.

In this experiment, the measurement device is placed under the chair in which the subject is
seated, and the distance from the subject is almost non-existent. Four experiments were conducted
under each condition, and the mean value of the experiment was used as the experimental result. As in
Section 4, the room temperature was measured every minute during the experiment to show that there
was no sudden temperature change in the room. In order to increase the CO2 concentration in the
room in a short time and with a small number of subjects, the ventilation openings and gaps between
the doors were covered with liner. In addition, the studio used in the experiment was a basement
room, and there were no windows or other openings. After the experiment, in order to keep the effect
of ventilation volume other than volume and the change in ventilation volume from experiment to
experiment small, one of the air conditioning linings and one of the door linings were removed, the air
conditioning was activated and the subjects were exited. After confirming that the CO2 concentration
in the room decreased to the same level as the outside air in the building (about 400 to 500 ppm by the
measurement device), we started the next experiment. The parameter of the number of ventilation
cycles in each studio was determined under the following conditions: a measurement device was
installed in each room as shown in Figure 12, the CO2 concentration in the room was measured and the
average value of the CO2 concentration in the room was taken as the CO2 concentration in the room.

D1, D2 and D3 were placed on the floor (0 m height), while D4, D5 and D6 were placed at the same
location and at different heights (0 m, 1 m and 2 m), and each device was placed about 10 cm away from
the nearest wall except for D2. Next, a maximum of 10 subjects were placed in a room and the CO2

concentration in the room was increased to more than 2000 ppm. Afterward, the subjects left and the
door was reattached from the outside. Considering the effect of air inflow due to evacuation, we used
the initial CO2 concentration 30 min after evacuation as the initial concentration and calculated the
amount of ventilation compared to the CO2 concentration one hour after that time. For the calculation,
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Equation (3) was used from the carbon dioxide method specified in JIS standard A1406, and the
number of times each ventilation was determined.

Q = 2.303
V
t

log10
C1 − C0

Ct − C0
(3)

Q is amount of ventilation (m3/h), V is room volume (m3), t is elapsed time since the first
measurement (h), C1 is CO2 concentration in the room at the time of the first measurement (mg/m3),
Ct is concentration of CO2 in the room after t hours (mg/m3) and C0 is CO2 concentration in the
outside air (mg/m3).

Figure 12. Position of measurement devices in the ventilation measurement experiment.

Since the CO2 concentration in the building was stable at about 450 ppm, the unit was converted
to C0. From Equation (3), each studio’s amount of ventilation was calculated. And the ventilation cycle
was calculated from the amount of ventilation and studio volume. The ventilation cycle for each studio
was 0.67 cycle/h for small studio, 0.23 cycle/h for medium studio and 0.08 cycle/h for large studio,
with the results showing different ventilation cycles depending on the volume. In the calculation of the
prediction model, the CO2 emission of the subject was referred to as the numerical value defined by JIS
A 1406, and according to JIS A 1406, the CO2 emission in seated office work is 0.0129 to 0.0230 m3/h.
Therefore, the median CO2 emission per subject was determined to be 0.0180 m3/h.

5.3. Results

The results of changing the number of subjects in the large, medium and small studio
environments are shown in the graphs from Figures 13–15 along with the results of the prediction
model. However, when we experimented with six subjects in the small studio, the CO2 concentration
in the room was about to exceed 2000 ppm, and the experiment was stopped because of the effect on
the health of the subjects. In all experiments, the average room temperature ranged from 19 to 22 ◦C
and did not change more than ±2 ◦C during the experiment. For all graphs in this section, the x-axis
shows the time elapsed and the y-axis shows the amount of change in CO2 concentration from the
beginning of the experiment.

As shown in Figure 13, the maximum difference between the predicted and measured values of
41.9 and 77.2 ppm for the two and four subjects, respectively, was similarly increased in the small
studio. In contrast, as shown in Figures 14 and 15, there was a clear discrepancy between the measured
and predicted values in the studio and large subjects, with a maximum difference of 200 to 500 ppm
in the studio and 70 to 200 ppm in the large subjects. Therefore, it is clear that the prediction model
deviates from the measured values in the environment with low ventilation cycle.
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Figure 13. Predicted and measured values of CO2 concentration in the small studio (2 and 4 subjects).

Figure 14. Predicted and measured values of CO2 concentration in the medium studio (2, 4, 6 subjects).

Figure 15. Predicted and measured values of CO2 concentration in the large studio (2, 4, 6 subjects).

6. Discussion

From the experimental results in Section 4, it is considered that the effect on CO2 diffusion
and CO2 concentration in a room is insignificant under any condition of distance from a subject,
height difference and position with a subject in a space with CO2 concentration of about 1000 ppm,
and there is no effect on CO2 diffusion considering the error of the sensor used.
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The experimental results in Section 5 indicate that the prediction model is sufficiently useful
for predicting CO2 concentration in a room if the ventilation cycle is at least above 0.67 (cycle/h).
According to the Japanese building code, the minimum number of ventilation is 0.5 in a human living
space [14]. Therefore, this model is valid for many residential spaces. However, in an environment
with low ventilation cycle, the difference from the prediction model increases, so it is necessary to use
a measurement device and measure it in real-time.

These results show that when measuring CO2 concentration in a room under the condition of no
external influence, it is not necessary to measure at multiple points at the same time, and it is clear that it
is possible to measure CO2 concentration in a room within the error of the measurement device even if
it is localized. In addition, under the condition of measurement at 1-minute intervals and the accuracy
of the CO2 concentration sensor used, we considered that the room concentration increases near
the measurement point in the same way as instantaneous uniform diffusion, albeit quasi-uniformly.
Seidel’s equation was selected as the prediction model based on the results of this experiment.
We compared the measured CO2 concentration with the predicted value using the prediction model in
a room with different volume on the same basement level of the same building, changing the number
of subjects. As a result, the prediction model is considered to be sufficiently useful for predicting
indoor CO2 concentrations when the ventilation cycle is above 0.67 (cycle/h), but there is a large
discrepancy between the predicted and measured values of the prediction model when the ventilation
cycle is low. Therefore, it is necessary to measure CO2 concentration in real-time using a device to
predict CO2 concentration.

7. Conclusions

To maintain the quality of intellectual activity in human interaction in a room, we analyzed
the diffusion tendency of CO2 in exhaled air and studied a model to predict CO2 concentration
for an automatic ventilation system. First of all, we evaluated the effect of the distance from the
sensor, the difference in height and the presence of people in multiple locations on the diffusion
of CO2 in an indoor room, and analyzed the diffusion trend of CO2 concentration in the room.
Furthermore, under the condition that there is a certain error between the accuracy of the CO2

concentration sensor in a room and the average CO2 emissions of a typical user, we examined how
much the deviation between the prediction model and the measured values by the measurement
device occurs. To verify these results, we developed a measurement device equipped with a CO2

concentration sensor with high accuracy and digital output, and constructed a system that can measure
the concentration change in a whole room by simultaneous multi-point sensing, instead of local
measurement in a room. From the results, even in a studio with a very small ventilation cycle
(0.08 cycle/h), the effect on CO2 diffusion and CO2 concentration was insignificant in terms of distance
from the subject, height difference and position with the subject, and there was no effect on CO2

diffusion considering the error of the sensor used. In addition, Seidel’s equation was found to be useful
in predicting CO2 concentration under a sufficient ventilating cycle. In the future, we would like to use
different sensors and create a measurement system to further improve the prediction accuracy, and to
consider its application to models. If it becomes possible to predict changes in CO2 concentration
due to human breath in a room, it will be possible to maintain the indoor environment in an optimal
state to maintain the quality of human intellectual activity by linking it with an automatic ventilation
system, etc., before CO2 concentration interferes with human intellectual activity. These technologies
will be effective not only in meeting rooms and offices, but also in various other settings such as homes
and schools.
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