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Microcode Optimization with Neural Networks

Sunil Bharitkar, Kazuhiro Tsuchiya, and Yoshiyasu Takefuji

Abstract—Microcode optimization is an NP-complete com- (complex instruction set) such as the Pentium and Motorola
binatorial optimization problem. This paper proposes a new g80XO.
method based on the Hopfield neural network for optimizing the Microcode optimization is an NP-hard problem [1]. There

wordwidth in the control memory of a microprogrammed digital | sch that h b d f ideri
computer. We present two methodologies, viz., the maximum are Several SChemes that have DEEn Proposed 1orconsiGering

clique approach, and a cost function based method to minimize SUch a problem. The strategies are categorized as [2]: 1)
an objective function. The maximum clique approach albeit being word dimension reduction [3]-[9]; 2) bit dimension reduction
near O(1) in complexity, is limited in its use for small problem  [10]-[18]; 3) state reduction [19]; and, 4) heurestic reduction
sizes, since it only partitions the data based on the compatibility [20], [21].

between the microoperations, and does not minimize the cost The best alqorith in t f | t functi
function. We thereby use this approach to condition the data e best algorithm (in terms of a lower cost function)

initially (to form compatiblity classes), and then use the proposed Was proposed by Puret al. [10]. It may be possible to
second method to optimize on the cost function. The latter method minimize this objective function (cost function) so as to find a
is then able to discoverbetter solutions than other schemes for petter solution. Due to the diverse and successful application
the benchmark data set. of neural networks in solving optimization problems (e.g.,
Index Terms—Microcode optimization, maximum clique, neu- [22]-[28]), it was hypothesized that a lower cost could be
ral networks, NP-complete. achieved by such a method.
In this paper we present a Hopfield neural network (HNN)
|. INTRODUCTION approach for microcode bit_reduction. Specifically, we pro-
o ] . pose two submethods for this problem: neural-network maxi-
M ICROCODE optimization is an important problem iy, m clique (NNMC) [26] and neural-network cost optimizer
A designing ef_fement mmrpprogram_med cont_rollers in E’NNCO). The NNMC is a neaO(1) complexity scheme,
digital system. Typically, the microcode is stored in a contrg},y generated optimal solutions for small problem sizes (in
memory (ROM or RAM) of the system. The control signalge;mg of the number of microoperations), however, the NNMC

that are to be activated at a given time is specified Ry not have an explicit cost function to minimize, hence it

a microinstruction. Each of the microinstructions may havgjieq to give the lowest possible known solutions for large
mlcrooperatlon(s)_assoqated with it Whlch are responsible fBFobIem sizes (having number of microoperationt’). Since

the low-level manipulation of the data in the system. For .gpe NNMC partitions the data into compatibility classes (with
a microinstruction may be responsible for performing additiony, jhsignificant increase in computation time due to increasing
and the individual microoperations may be readmg/wntmgromem size), we used this conditioned data as the input to

the data into buffers to perform this addition. A coIIectioqhe NNCO method to obtain better solutions for the DEC and
of microinstructions is called a microprogram. Microprogramga microinstruction set.

may be changed easily by changing the contents of the controle grganization of this paper is as follows. In Section I,

memory, thereby demonstrating the flexibility in their useye provide the problem statement and an example. Section il
However, some of the associated disadvantages are [Ihyides some background information in graph theory. In
extra hardware cost due to the control memory and its 8§aciion |v we provide the relevant background to neural
cess circuitry, performance penalty imposed on accessing h8yorks. We also present the NNMC and the NNCO
control memory. These disadvantages have discouraged i€ microcode optimization. Section V' contains the results.
use of microprogramming in RISC (reduced instruction Sefection vi concludes this paper. The Appendix contains one

machines, where chip area and circuit delay must both Bg.h, giscovered solution configuration for the DEC and IBM
minimized. Microprogramming continues to be used in CISC $;icroinstruction set.
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TABLE |
COMPATIBILITY RELATION BETWEEN SUBCOMMANDS

Word | Subcommand

W ab,e,de, f

Wy e, g b

W,y a, byl g
SUSR — i
Wy d, h. k

W Ih

A compatibility clasd";, contains members (subcommands)
that are pairwise compatible. For e.g., from Table I, subcom-
mandsa and g could belong to this class. A minimal solution
to this allocation problem is any set of compatible classes

A:[F17F27"'7Fn] (1)
such that 1) every subcommangd is contained in one com-
patibility class and 2) theost function Fig. 1. Compatibility graph for example in Table I.
L="Y"[logy(|li[ + 1)] (2) 1
i=1

is minimized. Here|Il';| denotes the number of subcommands

in classI';. For the example considered in Table I, the fol-

lowing minimal solution(L = 9,n = 7) can be easily

verified Vi

A =[{a}{b}{ch{d, 9,5} {e, 0, kL AFHAR. (3)

Thus, given a set of microinstructions (words), the mi-
crocode optimization problem igartition the subcommands
into a set of compatibility classes such that (2) is minimized

Ill. BACKGROUND ) . .
Fig. 2. Binary neuron function.
Definition 1: A graph G(V, E') consists of node$V’) and

edges(E). We can map the microcode optimization prob- _ ) . .
lem described in Section Il into a graph theory problem as Definition 3: Let G(V, ), where be an arbitrary undirected

follows. The subcommands are represented as nodes, JFPh- Two vertices and j are calledadjacentis they are
their compatibility being indicated by an edge (a presenE’theCted by an edge._ehque of G IS a subsgt Oﬂ/_’ in
of an edge indicating compatibility, and no edge representi?rﬂgs“(:h every pair of vertices are adjacent. A clique is called

incompatibility). We define compatibility between nodend aximalif it is not a subset of another clique, and the highest
node by the following mathematical notation: cardinality maximal clique is called maximum cliqueFor,
’ ' e.g., from Fig. 1, the maximum clique consisits- f — 7 — k.

dij = { 1 = compatiblity (4) It has been proven that obtaining a maximum clique from a
0 = incompatiblity. graph is NP-Complete [29].
For the microcode example given in Table |, a correspond-
ing graph is shown in Fig. 1. IV. THE ALGORITHMS
Definition 2: The densityp of a graph is given by Before presenting the proposed algorithms (NNMC and
_ @ (5) NNCO), we digress to provide a brief description of the
p= ¥ activation functions used in the model.
where The McCulloch—Pitts binary neuron model (Fig. 2) has been
n(n—1) widely used in solving optimization problems. It was also used
TEm (6) in the NNMC algorithm. The model is stated as follows:
Here, |E| = number of edges, and = number of nodes in Vi = 1, U;j=0 7
i=%0 U <0 (M
the graph. , U;<O.
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of neurons, and

1, =0
9(3”):{0, z #0.

The first term in (9) discourages neuron (subcommantd)
have a nonzero output if neura@ns not adjacent to neuron

The second term in (9) encourages neurém have a nonzero
output if neuron: is adjacent to all the other neurons and
the output of neuron is zero. Because a neuron which has
many adjacent neurons is more likely to belong to a clique, the
coefficientB is changed by the number of adjacent neurans
in our algorithm (see [26] for a detailed description) as

2
5o

Fig. 3. Maximum neuron function (shaded areas indicate active neurons). np
where p is defined by (5).
The algorithm is described below.

1) Setn = ProblemSize,m = 1.

(11)

and A=1 (12)

Another type of transfer function is the one-dimensional
maximum neuron function. The advantage of using this func- 4, ) o
tion is that every converged state corresponds to a feasible?) Se€tup the compatibility graph connectiods;,j =

(acceptable) solution [30]. The mathematical representation for 1+ 2" :*»n depending on the problem. ,
the one-D maximum function is 3) Initialize the input to the neurons using a uniform

random number generator, viZ};(0) € [-1,1];¢ =
1, Uy>Up;VkkE#j
Vi, = 0.

1,2,---,n.
otherwise. Apply the binary neuron model and determine the output
For, e.g., in Fig. 3, the maximum neurons (i.e., the active 5)
neurons) correspond to filled squares in the<33 neuron 6)

array. This function represents the allocation of subcommands

®

ibility class I',,,;;m = m + 1.
activated, we can state that subcommant allocated to  8) ComputeL from (2).
mechanism for updating a neuron output.

Call function GenerateMaximumClique( ), given below.
Assign the subcommands obtained from five to compat-
(indicated by the rows) to compatibility classes (indicated 7) Repeat 5-7 until all subcommands are in the compati-
by the columns). In other words, when tlgjth neuron is bility classes.
compatibility class;. _ . The GenerateMaximumClique( ) algorithm is as follows.
Finally, both the proposed algorithms use a sequentlal5'1) Compute:
With the relevant information, we now proceed to explain
the proposed algorithms for microcode optimization.

AU(k) =—A zn: (1—d,;;)V;(k) + BO

A. NNMC with Binary Neuron Function ] zn: (1= dij V(K + Vi(k) (13)
(] 7 )
This method is based on the approach developed by Takefuji j=1
et. al. [26]. The objective was to maximize the number of 2
vertices of the selected complete subgraph. The dynamicalls' )
equation for generating a clique of a graph is given by Ui(k+1) = Uy(k) + AU; (k). (14)

i 5.3) ComputeV;(k + 1) from (7) using (14).
—A Y (1 —dij)V; + B8 5.4) If Vi(k) = 1 and ¥, (1 — dyy)Vj(k) = 0; or,
=1 Vi(k) = 0 and S7_) (1 — dij)Vi(k) # 0,i = 1,2,---,m;
then terminate this procedure else= k + 1.

au;
dt

<,

NIE

(1-di)V;+Vi 9) The advantage of using this method is a negligible conver-
J=1 gence time to the global minimum for small problem sizes
1, U; 20 (viz., ex1, ex2, contl, cont2, dac89, mulee Tables Il and Il
Vi :{0, U, <0 (10) for the considered problem sizes). For the other problem

sizes, the steady-state solution was always higher than the
where,d;; (compatibility between two subcommands) is one ibwest known cost function. This is due to the fact that the
neuron: is connected to neurop(i.e., the two subcommands,clique algorithm has constraints in the form of compatibility
¢+ and j are compatible), zero otherwisd;; = 1 (in graph connections, but has no objective cost function to minimize
theory,d;; represents an element of thdjacencymatrix, i.e., [so as to yield a structure similar to (5)]. Since this algorithm
whend;; = 1, vertexi is adjacent to vertey; and, when partitions the subcommands in a negligibly small computation
d;; = 0, vertexi is not adjacent to vertey); » is the number time, it was decided that this partitioned information would be
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TABLE I
RESULTS
i ‘ . .
Example « pops | Our algo. | Puri's algo. | Hong's algo. | Nagle's algo. | Baer’s algo.
LT Lo LT LT LT
cxifl6] | % (G 6 0.01 6 0.07 T 0.07 6 0.25
ex218] | 11| 90 = 9 0.01 9 0.19 9 0.03 9 0.11
cx3[15) | 25 1167 0.1 ] 16 0.1l 17 1.48 19 1.38 16 1.93
ecAlll] | 32 | T o= 7001 T 034 7047 704
TABLE Il L is defined by (2).
REsuLTs The indexesi, j are identifiers for the subcommand and
[ compatibility class, respectively. Thus in (15) and (16),
I Example | pops | Our algo. | Puri’s algo. | Hong’s algo. l/vzj7‘/zj are input(output) to(of) neuror in Compa“bmty
Lo LT I classl’; (e.g., whenV;; = 1, subcommand is assigned to
- i compatibility classL;).
cont1j32} | 14 8§ = 8 0.01 9 0.16 ki;j(¢) is a complex function of the compatibilityl;;
_ . . . [explained after (10) in Section IV-A] between subcommands
cont2[32] 11 6 = 6 0.01 6 0.11 in different classes.
cont3[33) | 23 | 8 =~ 8 0.01 3 036 The effect of (17) and (18) on (15) is explained below.
Observe that, when a subcommainid compatible with all
conid[33] | 20 9 = 9 0.04 9 0.38 other subcommands in claFs, (i.e., whend;, = 1,Vs € I';),
then X,cr. f(d;s) = 0 using (18). Thus, from (17) see
dacs9[13] | 14 | 9 = 9 0.01 9 021 sery f(dis) g (18) (17)
that Iiij[zgerj f(dw)] = 1. From (15),dl/vzj/dt = € —
mult[31] 1719 & 12 001 12 0.64 L = «. If a subcommand is not compatible with even one
subcommand in clads; (i.e, whend;; = 0 for somes € I';),
epel6[10] |29 | 18 0.02 | 18 0. 18 2.0 then X,cr, (dis)>0 using (18). Thus, from (17) see that
pdp—9[14] | 36 |22 0.08| 23 0.0 23 14 fiij[Bser, f(dis).] = 0. From (ls)’dUij/dt N _If =8
. Now, « > 3, which means that if a subcommaridis not
ibm360[31] | 115 | 37 55 | 38 1.3 38 105.5 compatible in clas$’; (due to the incompatible subcommands

in I';), it will have stronger negative bias as compared to the
fact if subcommand was compatible with clask;. This in
used by a second stage that incorporated the objective functigfi? allows a lesser chance of firing (activating basd on the
in its motion (dynamical) equation. maximum neuron function) of the incompatible neuton

This second stage is the NNCO and is explained below. Steady state of the system (15) is reached when all condi-
tions of compatibility are satisifed, i.e.,

B. NNCO with Maximum Neuron Function dU;;

=0= ry(¢) = L;Vi,j (19)
In this method, the dynamical equation for microcode dt .
optimization is given by and the steady-state solution is
e=1L (20)
dg;ij — ki Z fldis)|e— L (15) The algorithm for this method is given below.
sCT; 1) Obtain the partitioned data from the NNMC method.
v { 1, Uy>UpsVkk#j (16) 2) Set _the user defined_ cost functien (as mentioned
) 0, otherwise previously, this value is set reasonably lower than the
1 $=0 best known cost function for the problem).
rij(¢) = { 0’ 60 a7) 3) Evaluater;;(¢) by hypothetically placing subcommand
’ ¢ in classl';.
f(r) = { (1), : ; (1) (18) 4) EvaluateL [from (2)] resulting from this placement.
J : 5) Compute

In (15), € is a user defined cost function value required to
be achieved (e.g., the following values efwere set for AU(k) = kij Z f(dis)|e— L. (21)
pdp — 9: e = 22, andibm360: ¢ = 37). sCT;
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6) Evaluate value ofw was kept between three and six. Larger values of
[i.e., using (23) more often than (24)] affect the convergence
Uij(k +1) = Uy (k) + AU; (k). (22)  time to a steady-state solution, since term Il introduces an
7) Use the maximum neuron model (16), to update irpifset to the original differential equation (15). Smaller values
neuron activations. If the jth neuron has activated (i.e.,0f @ do not introduce any significant perturbation to the
if Vi;(k+1) = 1), truly assign subcommandto class SYStem.

r.. The value ofp was set equal to unity. It can be easily seen
8) Injcrement the iteration step. that a larger (smaller) value of results in a larger (smaller)
9) Repeat Steps 3)-8), until steady state or maximuf@ntribution of Term Il (compared to Term ) to (23). So, we

number of iterations have been reached. may look atn as a quantity that adjusts the “intensity” of per-

BLilrbation. Observing the effects of Term | during experiments,

We examined the solution generating ability and behaV|One can then adjust this quantity appropriately.

using this method. By adjusting we were able to obtain
the best known solutions [10]. Unfortunately, this method

demonstrated oscillations (i.e., some solutions repeating in V. RESULTS
a periodic fashion) for different initializations (i.e., clique . L
solutions obtained from the NNMC method). This was most The following notation is used for the Tables Il and Il,

likely due to the system having converged to some loc4PPS 1S t_he number of mm_roopgratl_on_s,l_s the minimum
minimum which it had no means of escape. cost obtained from the algorithm in bitsindicates optimized

Accordingly we modified this method to incorporate cost, time(T) is in seconds (measured on a SunSparc-20 for

perturbation mechanism known as the omega function [311.: proposed algorithm) arsd denotes negligible computation
Step 5) in the algorithm was replaced by the following
modification,

5) If(iteration%10 < w)

In this section, we shall present the results obtained on
using the NNMC and NNCO methods. From Table I, we
observe that the proposed algorithm performs as good as

I the other algorithms in finding theptimal solutions (with
a negligible computation time). From Table Ill, we see that

AU (k) = ki Z f(di)|e—L Puri’s algori_thm and our algorithm perform equally yvell for

ol problems with the number of microoperations ranging from

7 14-29. However, we see that better solutions (i.e., a lower

g -~ ~ cost function) were obtained for the DEC PDP-9 and IBM 360
microinstruction set examples. One such solution configuration
+°Qra| > fdis) (23)  obtained is given in the Appendix.

l

scl’;

else VI. CONCLUSION

In this paper, we presented two methods used in conjunction
AU(k) = ki | > f(dis)|e— L (24)  for the microcode optimization problem. The NNMC method
sCL; (which does not have an explicit cost function in the motion
where equation) when used separately was not able to find solutions
for large problem sizes (as mentioned earlier). However, when
Q(z) = {gv z : 1 (25) coupled with the NNCO method, the resulting algorithm
» Otherwise was able to discover better solutions for the DEC and IBM
where % denotes the modulo operator and are constants. Microinstruction set.
Term Il in (23) represents a form of konusor incentive ~ However, in the future it may be possible to incorporate an
given to a neuron (subcommand) in proportion to the numb@gditional cost function term in the maximum clique motion
of classes it are compatible with, so that it may have a high@guation (9), thereby possibly eliminating the use of the
chance of being activated. NNCO method. As an alternative, it could be possible to use
We experimented with various values far, andw. the NNCO method by itself (i.e., randomly initializing the
When we reduced the value obelow the cost results given Subcommand-class allocation, instead of using partitioned data
in Tables Il and Ill (e.g..« = 12 for mult in Table IIl), we available through the NNMC method).
were unable to obtain convergence to a solution. One possible
reason is that the cost obtained in Tables Il and Il could be
optimal (difficult to prove analytically for problems of this
form), since the constraints were not satisfied (kg.(¢) # 1) ) ] ) )
for lower values ofe thereby resulting in a nonconvergencéd® Selution Configuration for DEC-PDP9 Microcode
to a solution. A = [{29},{6,13,16,17,30,32}, {31}, {7, 10, 14}, {28},
As mentioned previously, the effect af is to introduce {12,22,27},{26},{25}, {1,2,3,4,5,15,18},{9,21,23, 24,
perturbation to move the system out of a local minimum. Th&t, 35, 36}, {19, 20, 33}, {11}, {8}].

APPENDIX
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B. Solution Configuration for IBM360 Microcode [13]

A=[{84,40,93,94, 72,73, 81, 83,107, 88,89, 90,91, 92, 41,
95,96, 97,98,99100 101 102 103 108 109}, {50,17, 18,19,20, [14]
21,22,23,24,25,85,29, 31, 32, 51, 52, 76, 28, 47, 53, 54, 55,
56,57,86,77,78,48}, {106110111}, {60,61,62,63,64,65, g
66,67, 68,69,70,71, 16}, {114}, {104105112}, {79,80,74},
{3,4,5,6,7,8,9,10,11,12,13,14, 15}, {26,27,45,46,30, 34,
39,42, 43,44, 33,35, 36, 37,38}, {59}, {58,82,87}, {0,1}, H%
{113}, {2,49,75}].
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