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Microcode Optimization with Neural Networks
Sunil Bharitkar, Kazuhiro Tsuchiya, and Yoshiyasu Takefuji

Abstract—Microcode optimization is an NP-complete com-
binatorial optimization problem. This paper proposes a new
method based on the Hopfield neural network for optimizing the
wordwidth in the control memory of a microprogrammed digital
computer. We present two methodologies, viz., the maximum
clique approach, and a cost function based method to minimize
an objective function. The maximum clique approach albeit being
near O(1) in complexity, is limited in its use for small problem
sizes, since it only partitions the data based on the compatibility
between the microoperations, and does not minimize the cost
function. We thereby use this approach to condition the data
initially (to form compatiblity classes), and then use the proposed
second method to optimize on the cost function. The latter method
is then able to discoverbetter solutions than other schemes for
the benchmark data set.

Index Terms—Microcode optimization, maximum clique, neu-
ral networks, NP-complete.

I. INTRODUCTION

M ICROCODE optimization is an important problem in
designing effecient microprogrammed controllers in a

digital system. Typically, the microcode is stored in a control
memory (ROM or RAM) of the system. The control signals
that are to be activated at a given time is specified by
a microinstruction. Each of the microinstructions may have
microoperation(s) associated with it which are responsible for
the low-level manipulation of the data in the system. For e.g.,
a microinstruction may be responsible for performing addition,
and the individual microoperations may be reading/writing
the data into buffers to perform this addition. A collection
of microinstructions is called a microprogram. Microprograms
may be changed easily by changing the contents of the control
memory, thereby demonstrating the flexibility in their use.
However, some of the associated disadvantages are [16],
extra hardware cost due to the control memory and its ac-
cess circuitry, performance penalty imposed on accessing the
control memory. These disadvantages have discouraged the
use of microprogramming in RISC (reduced instruction set)
machines, where chip area and circuit delay must both be
minimized. Microprogramming continues to be used in CISC’s
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(complex instruction set) such as the Pentium and Motorola
680X0.

Microcode optimization is an NP-hard problem [1]. There
are several schemes that have been proposed for considering
such a problem. The strategies are categorized as [2]: 1)
word dimension reduction [3]–[9]; 2) bit dimension reduction
[10]–[18]; 3) state reduction [19]; and, 4) heurestic reduction
[20], [21].

The best algorithm (in terms of a lower cost function)
was proposed by Puriet al. [10]. It may be possible to
minimize this objective function (cost function) so as to find a
better solution. Due to the diverse and successful application
of neural networks in solving optimization problems (e.g.,
[22]–[28]), it was hypothesized that a lower cost could be
achieved by such a method.

In this paper we present a Hopfield neural network (HNN)
approach for microcode bit reduction. Specifically, we pro-
pose two submethods for this problem: neural-network maxi-
mum clique (NNMC) [26] and neural-network cost optimizer
(NNCO). The NNMC is a near complexity scheme,
and generated optimal solutions for small problem sizes (in
terms of the number of microoperations), however, the NNMC
did not have an explicit cost function to minimize, hence it
failed to give the lowest possible known solutions for large
problem sizes (having number of microoperations Since
the NNMC partitions the data into compatibility classes (with
an insignificant increase in computation time due to increasing
problem size), we used this conditioned data as the input to
the NNCO method to obtain better solutions for the DEC and
IBM microinstruction set.

The organization of this paper is as follows. In Section II,
we provide the problem statement and an example. Section III
provides some background information in graph theory. In
Section IV we provide the relevant background to neural
networks. We also present the NNMC and the NNCO
for microcode optimization. Section V contains the results.
Section VI concludes this paper. The Appendix contains one
such discovered solution configuration for the DEC and IBM
microinstruction set.

II. M ICROCODE OPTIMIZATION

Consider Table I having the ROM (read only memory)
words (instructions): with as sub-
commands (operations).

In general, the subcommands and are compatible if:
Thus from Table I, observe that

and are compatible, while and are incompatible.
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TABLE I
COMPATIBILITY RELATION BETWEEN SUBCOMMANDS

A compatibility class contains members (subcommands)
that are pairwise compatible. For e.g., from Table I, subcom-
mands and could belong to this class. A minimal solution
to this allocation problem is any set of compatible classes

(1)

such that 1) every subcommand is contained in one com-
patibility class and 2) thecost function

(2)

is minimized. Here, denotes the number of subcommands
in class For the example considered in Table I, the fol-
lowing minimal solution can be easily
verified

(3)

Thus, given a set of microinstructions (words), the mi-
crocode optimization problem is:partition the subcommands
into a set of compatibility classes such that (2) is minimized.

III. B ACKGROUND

Definition 1: A graph consists of nodes and
edges We can map the microcode optimization prob-
lem described in Section II into a graph theory problem as
follows. The subcommands are represented as nodes, and
their compatibility being indicated by an edge (a presence
of an edge indicating compatibility, and no edge representing
incompatibility). We define compatibility between nodeand
node by the following mathematical notation:

compatiblity
incompatiblity.

(4)

For the microcode example given in Table I, a correspond-
ing graph is shown in Fig. 1.

Definition 2: The density of a graph is given by

(5)

where

(6)

Here, number of edges, and number of nodes in
the graph.

Fig. 1. Compatibility graph for example in Table I.

Fig. 2. Binary neuron function.

Definition 3: Let , where be an arbitrary undirected
graph. Two vertices and are calledadjacent is they are
connected by an edge. Aclique of is a subset of , in
which every pair of vertices are adjacent. A clique is called
maximalif it is not a subset of another clique, and the highest
cardinality maximal clique is called amaximum clique. For,
e.g., from Fig. 1, the maximum clique consisits
It has been proven that obtaining a maximum clique from a
graph is NP-Complete [29].

IV. THE ALGORITHMS

Before presenting the proposed algorithms (NNMC and
NNCO), we digress to provide a brief description of the
activation functions used in the model.

The McCulloch–Pitts binary neuron model (Fig. 2) has been
widely used in solving optimization problems. It was also used
in the NNMC algorithm. The model is stated as follows:

(7)
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Fig. 3. Maximum neuron function (shaded areas indicate active neurons).

Another type of transfer function is the one-dimensional
maximum neuron function. The advantage of using this func-
tion is that every converged state corresponds to a feasible
(acceptable) solution [30]. The mathematical representation for
the one-D maximum function is

otherwise.
(8)

For, e.g., in Fig. 3, the maximum neurons (i.e., the active
neurons) correspond to filled squares in the 33 neuron
array. This function represents the allocation of subcommands
(indicated by the rows) to compatibility classes (indicated
by the columns). In other words, when the th neuron is
activated, we can state that subcommandis allocated to
compatibility class

Finally, both the proposed algorithms use a sequential
mechanism for updating a neuron output.

With the relevant information, we now proceed to explain
the proposed algorithms for microcode optimization.

A. NNMC with Binary Neuron Function

This method is based on the approach developed by Takefuji
et. al. [26]. The objective was to maximize the number of
vertices of the selected complete subgraph. The dynamical
equation for generating a clique of a graph is given by

(9)

(10)

where, (compatibility between two subcommands) is one if
neuron is connected to neuron(i.e., the two subcommands,

and are compatible), zero otherwise; (in graph
theory, represents an element of theadjacencymatrix, i.e.,
when , vertex is adjacent to vertex ; and, when

, vertex is not adjacent to vertex); is the number

of neurons, and

(11)

The first term in (9) discourages neuron (subcommand)to
have a nonzero output if neuronis not adjacent to neuron
The second term in (9) encourages neuronto have a nonzero
output if neuron is adjacent to all the other neurons and
the output of neuron is zero. Because a neuron which has
many adjacent neurons is more likely to belong to a clique, the
coefficient is changed by the number of adjacent neurons
in our algorithm (see [26] for a detailed description) as

and (12)

where is defined by (5).
The algorithm is described below.

1) Set
2) Setup the compatibility graph connections

depending on the problem.
3) Initialize the input to the neurons using a uniform

random number generator, viz.,

4) Apply the binary neuron model and determine the output

5) Call function GenerateMaximumClique( ), given below.
6) Assign the subcommands obtained from five to compat-

ibility class
7) Repeat 5–7 until all subcommands are in the compati-

bility classes.
8) Compute from (2).

The GenerateMaximumClique( ) algorithm is as follows.
5.1) Compute:

(13)

5.2)

(14)

5.3) Compute from (7) using (14).
5.4) If and ; or,

and
then terminate this procedure else

The advantage of using this method is a negligible conver-
gence time to the global minimum for small problem sizes
(viz., ex1, ex2, cont1, cont2, dac89, mult; see Tables II and III
for the considered problem sizes). For the other problem
sizes, the steady-state solution was always higher than the
lowest known cost function. This is due to the fact that the
clique algorithm has constraints in the form of compatibility
connections, but has no objective cost function to minimize
[so as to yield a structure similar to (5)]. Since this algorithm
partitions the subcommands in a negligibly small computation
time, it was decided that this partitioned information would be
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TABLE II
RESULTS

TABLE III
RESULTS

used by a second stage that incorporated the objective function
in its motion (dynamical) equation.

This second stage is the NNCO and is explained below.

B. NNCO with Maximum Neuron Function

In this method, the dynamical equation for microcode
optimization is given by

(15)

otherwise
(16)

(17)

(18)

In (15), is a user defined cost function value required to
be achieved (e.g., the following values ofwere set for

, and

is defined by (2).
The indexes are identifiers for the subcommand and

compatibility class, respectively. Thus in (15) and (16),
are input(output) to(of) neuron in compatibility

class (e.g., when , subcommand is assigned to
compatibility class

is a complex function of the compatibility
[explained after (10) in Section IV-A] between subcommands
in different classes.

The effect of (17) and (18) on (15) is explained below.
Observe that, when a subcommandis compatible with all

other subcommands in class, (i.e., when
then using (18). Thus, from (17) see
that From (15),

If a subcommand is not compatible with even one
subcommand in class (i.e, when for some ),
then using (18). Thus, from (17) see that

From (15),
Now, , which means that if a subcommandis not
compatible in class (due to the incompatible subcommands
in ), it will have stronger negative bias as compared to the
fact if subcommand was compatible with class This in
turn allows a lesser chance of firing (activating basd on the
maximum neuron function) of the incompatible neuron

Steady state of the system (15) is reached when all condi-
tions of compatibility are satisifed, i.e.,

(19)

and the steady-state solution is

(20)

The algorithm for this method is given below.

1) Obtain the partitioned data from the NNMC method.
2) Set the user defined cost function (as mentioned

previously, this value is set reasonably lower than the
best known cost function for the problem).

3) Evaluate by hypothetically placing subcommand
in class

4) Evaluate [from (2)] resulting from this placement.
5) Compute

(21)
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6) Evaluate

(22)

7) Use the maximum neuron model (16), to update the
neuron activations. If the th neuron has activated (i.e.,
if ), truly assign subcommandto class

8) Increment the iteration step.
9) Repeat Steps 3)–8), until steady state or maximum

number of iterations have been reached.

We examined the solution generating ability and behavior
using this method. By adjusting we were able to obtain
the best known solutions [10]. Unfortunately, this method
demonstrated oscillations (i.e., some solutions repeating in
a periodic fashion) for different initializations (i.e., clique
solutions obtained from the NNMC method). This was most
likely due to the system having converged to some local
minimum which it had no means of escape.

Accordingly we modified this method to incorporate a
perturbation mechanism known as the omega function [31].
Step 5) in the algorithm was replaced by the following
modification,

5) If

(23)

else

(24)

where

otherwise
(25)

where % denotes the modulo operator and are constants.
Term II in (23) represents a form of abonus or incentive
given to a neuron (subcommand) in proportion to the number
of classes it are compatible with, so that it may have a higher
chance of being activated.

We experimented with various values for and
When we reduced the value ofbelow the cost results given

in Tables II and III (e.g., for mult in Table III), we
were unable to obtain convergence to a solution. One possible
reason is that the cost obtained in Tables II and III could be
optimal (difficult to prove analytically for problems of this
form), since the constraints were not satisfied (i.e.,
for lower values of thereby resulting in a nonconvergence
to a solution.

As mentioned previously, the effect of is to introduce
perturbation to move the system out of a local minimum. The

value of was kept between three and six. Larger values of
[i.e., using (23) more often than (24)] affect the convergence
time to a steady-state solution, since term II introduces an
offset to the original differential equation (15). Smaller values
of do not introduce any significant perturbation to the
system.

The value of was set equal to unity. It can be easily seen
that a larger (smaller) value of results in a larger (smaller)
contribution of Term II (compared to Term I) to (23). So, we
may look at as a quantity that adjusts the “intensity” of per-
turbation. Observing the effects of Term I during experiments,
one can then adjust this quantity appropriately.

V. RESULTS

The following notation is used for the Tables II and III,
ops is the number of microoperations, is the minimum

cost obtained from the algorithm in bits,indicates optimized
cost, time is in seconds (measured on a SunSparc-20 for
the proposed algorithm) and denotes negligible computation
time.

In this section, we shall present the results obtained on
using the NNMC and NNCO methods. From Table II, we
observe that the proposed algorithm performs as good as
the other algorithms in finding theoptimal solutions (with
a negligible computation time). From Table III, we see that
Puri’s algorithm and our algorithm perform equally well for
problems with the number of microoperations ranging from
14–29. However, we see that better solutions (i.e., a lower
cost function) were obtained for the DEC PDP-9 and IBM 360
microinstruction set examples. One such solution configuration
obtained is given in the Appendix.

VI. CONCLUSION

In this paper, we presented two methods used in conjunction
for the microcode optimization problem. The NNMC method
(which does not have an explicit cost function in the motion
equation) when used separately was not able to find solutions
for large problem sizes (as mentioned earlier). However, when
coupled with the NNCO method, the resulting algorithm
was able to discover better solutions for the DEC and IBM
microinstruction set.

However, in the future it may be possible to incorporate an
additional cost function term in the maximum clique motion
equation (9), thereby possibly eliminating the use of the
NNCO method. As an alternative, it could be possible to use
the NNCO method by itself (i.e., randomly initializing the
subcommand-class allocation, instead of using partitioned data
available through the NNMC method).

APPENDIX

A. Solution Configuration for DEC-PDP9 Microcode
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B. Solution Configuration for IBM360 Microcode
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