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A B S T R A C T

Jung et al. (2025) achieved high predictive accuracy in interpolating missing ozone data using graph machine 
learning (ML) and conducted feature importance analysis with explainable AI (XAI). This correspondence ac
knowledges their significant contribution but discusses the limitations and biases inherent in ML models and XAI 
methods (e.g., Random Forest/Bootstrap Test, SHapley Additive exPlanations (SHAP)) and their impact on the 
reliability of derived feature importance. High predictive accuracy does not necessarily guarantee trustworthy 
interpretation of feature relevance, as evidenced by inconsistent importance rankings across models and XAI 
techniques. To enhance interpretability and scientific reliability, we advocate a validation strategy integrating 
ML with rigorous statistical analysis. It combines model-driven insights with statistical measures such as 
Spearman’s rho and Kendall’s tau, and information-theoretic metrics like Mutual Information and Total Corre
lation to capture complex, non-linear dependencies. Such integration improves the robustness of feature 
importance assessments and supports more reliable interpretations in environmental modeling.

Letter to the Editor

The recent paper by Jung et al. (2025), "Interpolation of missing 
ozone data using graph machine learning and parameter analysis 
through explainable artificial intelligence comparison," makes a valu
able contribution to interpolating missing ozone data and analyzing 
parameter influence. Their study evaluates the potential of a 
graph-based machine learning (GML) model that integrates statistical 
interpolation methods and explores feature importance using explain
able AI (XAI) methods, specifically the Bootstrap Test (BT) and SHapley 
Additive exPlanations (SHAP). However, the reliance on complex ma
chine learning (ML) models and the interpretation of feature importance 
warrants further discussion.

Jung et al. employed a GML model incorporating methods such as 
Spatial Mean (SM), Spatiotemporal Mean (STM), Nearest Neighbor 
Hybrid (NNH), and Random Forest (RF), enhanced by a Correct and 
Smooth (CaS) process for interpolating missing ozone data. They re
ported robust performance for this interpolation task, with the model 
effectively simulating O3 variations with R2 of up to 0.96 and RMSE of 
3.60 ppbv (for RF with CaS in Seoul, >7d missing interval). Beyond 
evaluating the performance of the interpolation model, a key aspect of 
their work involved feature importance analysis using XAI. For this 
analysis, they specifically applied the Bootstrap Test (BT) to the Random 
Forest (RF) model and SHapley Additive exPlanations (SHAP) to the 
XGBoost (XGB) model, revealing influential predictors such as NO2, Day 
of Year (DOY), Hour of Day (HOD), and Temperature. This raises critical 
concerns about potential bias in the ranked features derived from these 
specific models and XAI methods.

A growing body of recent research has underscored the complex 
challenges associated with interpreting feature importance in environ
mental modeling. Gu et al. (2025) introduced a vision-based model that 
integrates local and global information through a self-adaptive 

multiscale transform domain for air pollution monitoring. This approach 
complements Jung et al.’s graph-based method by demonstrating the 
potential of lightweight image-based techniques for efficient and scal
able air quality analysis. Wu et al. (2024) comprehensively review the 
utilization of geospatial AI in air pollution prediction, summarizing 
current model statuses and proposing future research directions. Their 
insights support the need for caution when interpreting feature impor
tance in complex models, particularly in the presence of spatial het
erogeneity and data-driven biases. Rabbani et al. (2024) applied 
chemometric and ML techniques to assess environmental stress on 
regional plants from thermal power plant emissions. Their findings 
revealed that fly ash increased soil copper and iron, impairing plant 
growth and chlorophyll content, while also demonstrating the high ac
curacy of satellite data and ML in predicting air quality and vegetation 
health (NDVI). Fang et al. (2025) emphasize the importance of temporal 
and meteorological parameters in environmental monitoring through 
their remote sensing-based analysis of phycocyanin. This highlights how 
environmental variables, such as DOY and temperature, can be identi
fied as influential in ozone prediction.

While Jung et al. present a valuable method achieving high ozone 
interpolation accuracy, this letter addresses a critical interpretational 
issue: the reliability of feature importance derived from their RF/BT and 
XGBoost/SHAP analysis. While their GML model demonstrated 
impressive predictive performance, this risks inadvertently implying 
reliability in the subsequent feature importance interpretation. How
ever, it is crucial to emphasize that high predictive accuracy does not 
inherently guarantee reliable feature importance, a limitation widely 
recognized in literature. As demonstrated by numerous previous studies, 
strong predictive performance does not guarantee dependable feature 
importance interpretation (Lipton, 2018; Fisher et al., 2019; Lenhof 
et al., 2024; Mandler and Weigand, 2024; Potharlanka and Bhat, 2024; 
Wood et al., 2024). This issue is perhaps best exemplified by two 
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influential works. As Lipton (2018) cautions, “While the 
machine-learning objective might be to reduce error, the real-world 
purpose is to provide useful information.” This highlights the risk of 
conflating predictive success with explanatory validity. Fisher et al. 
(2019) further demonstrate that feature importance is not uniquely 
defined across models with similar performance. They introduce the 
concept of Model Class Reliance (MCR), noting that: “Our central goal is 
to understand how much, or how little, models may rely on covariates of 
interest while still predicting well.” More details and supporting litera
ture can be found in the supplementary material.

Section 2.4 of Jung et al. (2025) clearly acknowledges this concern, 
stating: “it remains unclear whether these methods produce consistent 
results, as they are based on different ML models and estimation tech
niques for feature influence.” This issue has been further examined in 
simulation-based research (Oka and Takefuji, 2025), which demon
strates that SHAP-based rankings from XGBoost can diverge substan
tially from statistically grounded benchmarks such as Spearman’s rho 
and Kendall’s tau. Drawing insights from Jung et al.’s valuable research, 
we advocate for integrating complementary statistical methods to 
strengthen feature importance analysis in environmental modeling. This 
need for contextual and multidisciplinary validation is echoed in Wang 
et al. (2025), who demonstrate how life-cycle assessment (LCA) com
bined with economic valuation (WTP) can reveal hidden health risks 
associated with construction waste. Their approach underscores the 
importance of integrating domain-specific knowledge when interpreting 
model outputs, especially in environmental health contexts.

Interpreting complex ML models like RF and XGBoost, particularly 
when understanding feature importance, presents methodological 
complexities. These models, while offering strong predictive power, can 
generate feature importance scores influenced by their internal structure 
and operation, such as splitting logic and handling interactions. RF and 
XGBoost tend to overemphasize features used in earlier tree splits, 
potentially leading to skewed assessments (Huti et al., 2023; Salles et al., 
2021; Touw et al., 2013; Ugirumurera et al., 2024; Adler and Painsky, 
2022; Alaimo Di Loro et al., 2023). Collinearity among features can also 
distort importance estimates. When predictors are highly correlated, the 
model may choose one and ignore the others, underestimating their 
shared influence. Tree-based models do not account for joint variance or 
mutual contributions.

The analysis by Jung et al. relies on RF, BT, and XGBoost combined 
with SHAP. As a result, both model-specific biases and limitations of 
SHAP affect the interpretation. SHAP values are calculated by averaging 
marginal contributions across all feature permutations. In cases of strong 
collinearity, this can dilute importance scores because correlated fea
tures split their contributions. SHAP may also produce unrealistic 
feature combinations that do not exist in actual data, which can mislead 
the interpretation (Bilodeau et al., 2024; Huang and Marques-Silva, 
2024; Kumar et al., 2021; Lones, 2024; Molnar et al., 2022). There
fore, the ranked features reflect what is important to the model and its 
explanation method, rather than the true causal factors behind ozone 
concentration.

Fundamentally, validating feature importance is challenging due to 
the lack of ground truth. Different models can yield varying rankings 
because of their distinct methodologies and inherent biases. Indeed, 
Jung et al. themselves observed that "An interesting observation in 
Province regions is that the order of influence of HOD, DOY, and T 
differs between the BT and SHAP results" in Section 3.3, highlighting 
this critical issue. In environmental studies, complex feature sets with 
potential collinearity can further complicate interpretation and amplify 
these issues, making it difficult to confidently identify the actual de
terminants using only model-dependent analysis. These factors highlight 
that high predictive accuracy does not guarantee reliable feature 
importance interpretation from biased models and XAI methods. 
Although simulation-based validation can offer insights under 
controlled conditions, it cannot resolve the fundamental absence of 
ground truth in observational data.

Addressing the identified limitations in interpreting feature impor
tance from complex ML models and XAI methods requires a robust 
analytical strategy. Such a framework must begin with a thorough un
derstanding of the data characteristics and the underlying environ
mental processes governing ozone formation and distribution. Moving 
beyond model-dependent metrics, it is crucial to explore the statistical 
relationships between variables, including complex, non-monotonic 
associations, by utilizing appropriate non-parametric methods. 
Furthermore, rigorous statistical validation, incorporating techniques 
like hypothesis testing, is essential to ensure that findings are not merely 
artifacts of the modeling process but reflect genuine relationships.

Rather than relying solely on ML models and their inherent inter
pretability tools for feature selection and understanding model 
behavior, we advocate for a synergistic approach. This involves inte
grating the predictive power of ML with impartial and robust statistical 
methodologies, such as Spearman’s rho and Kendall’s tau, which are 
particularly adept at characterizing monotonic relationships (Okoye and 
Hosseini, 2024; Yu and Hutson, 2024). For more complex dependencies, 
including non-monotonic interactions among variables, alternative 
non-parametric methods like Mutual Information and Total Correlation 
offer valuable insights (Gibson, 2025; Kerby et al., 2024; Shi et al., 2024; 
Tserkis et al., 2025). By prioritizing fundamental statistical principles 
and employing methods capable of revealing diverse types of variable 
relationships, researchers can significantly enhance the credibility and 
dependability of feature importance assessments and model in
terpretations within environmental modeling domains.

To further enhance the statistical validity of feature importance as
sessments, it is essential to consider structural issues in the data. 
Collinearity among predictors can distort importance estimates by 
distributing influence arbitrarily among correlated features. In ML 
models, collinearity often leads to unstable and inconsistent feature 
rankings, as influence is arbitrarily split among correlated variables. In 
statistical methods, shared variance can exaggerate the apparent 
importance of features, resulting in misleading interpretations. Thus, 
whether using ML or statistical validation, careful attention to collin
earity is crucial. To address this, we suggest feature agglomeration (FA), 
which clusters correlated features into unified groups, reducing redun
dancy while preserving interpretability. Although Principal Component 
Analysis (PCA) is widely used for dimensionality reduction, it may 
introduce bias specific to linear models and obscure interpretability 
when components lack clear domain relevance.

In conclusion, while Jung et al.’s valuable GML model achieves high 
ozone interpolation accuracy, this letter highlights a critical challenge 
for environmental modeling. The inherent limitations of ML models and 
XAI methods, such as RF/BT and XGBoost/SHAP, mean that the iden
tified features cannot be automatically interpreted as the definitive 
drivers of ozone variability. High predictive accuracy in prediction tasks 
does not, in itself, guarantee dependable interpretation of feature 
importance. Solely relying on such interpretations risks misrepresenting 
the true mechanisms of complex environmental phenomena. Gaining 
truly trustworthy scientific insights therefore requires a robust approach 
that seamlessly integrates the predictive power of ML with the rigor and 
objectivity of complementary statistical methodologies. To advance 
reliable scientific insights, it is essential to integrate the predictive 
strengths of ML with the rigor of complementary statistical approaches. 
This perspective is reinforced by Li and Li (2023), who show that 
AI-based methods can reduce emissions and improve environmental 
performance when embedded within broader sustainability frameworks. 
Together, these insights point to the need for multifaceted, 
context-aware methodologies that support robust and unbiased envi
ronmental decision-making.
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