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Letter to the Editor

Zhang et al. developed machine learning (ML) models to predict
acute diarrhoea in rectal cancer patients undergoing chemo-
radiotherapy, warranting further discussion regarding interpretability
and methodological bias [1]. Zhang et al. used logistic regression to
predict a AG > 2 increase in acute diarrhoea toxicity and applied
SHapley Additive exPlanations (SHAP) to identify key predictors,
including small bowel Viggy, treatment arm, age, and performance
status. While the study offers valuable insights, its methodology raises
important concerns regarding interpretability and bias. In the ‘Methods
and Materials’ section, Zhang et al. explicitly state, “Logistic regression
was selected for AG > 2 prediction due to its simplicity and easy
interpretation.” However, this choice raises two critical methodological
concerns.

First, achieving high predictive accuracy for AG > 2 (AUROC = 0.71)
does not guarantee reliable or consistent feature importance rankings.
As emphasized in numerous studies, predictive performance alone does
not guarantee that the features identified are meaningful or reliable
[2-5]. Overreliance on accuracy metrics can obscure the interpretive
validity of the model’s outputs. Supplementary material includes more
discussion and references. Second, logistic regression is a logit-linear
and parametric model, assuming fixed functional forms and logit-
linear relationships between predictors and the log-odds of the
outcome [6-8]. While its simplicity and interpretability are appealing,
these characteristics make it ill-suited for modeling complex biological
phenomena, which often involve non-linear interactions and non-
parametric distributions. As a result, genuine non-linear patterns may
be entirely overlooked, leading to an incomplete or even misleading
understanding of acute diarrhoea risk.

Additionally, although SHAP values aim to clarify feature impor-
tance, they can inherit and sometimes amplify biases from the under-
lying model [9-11]. This dependency is evident in the formulation
‘explain = SHAP(model)’, which ties the explanation directly to the
model’s logic. In Zhang et al.’s pipeline, both logistic regression and
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SHAP are susceptible to bias, and their combination illustrates a com-
mon pitfall in ML-based biomarker discovery. When linearity assump-
tions fail to capture biological complexity, feature importance estimates
become unstable. The cascading amplification of bias raises concerns
about the interpretive validity of identified features. Generally, vali-
dating feature importance is difficult without ground truth; high
dimensionality and multicollinearity amplify model-specific biases,
destabilizing rankings and obscuring biological relevance.

To improve acute diarrhoea risk assessment reliability, a compre-
hensive analytical framework is needed. This framework should handle
complex clinical and biomarker data, incorporating methods for non-
linear patterns and multicollinearity reduction. Unsupervised tech-
niques such as Feature Agglomeration (FA) and Highly Variable Gene
Selection (HVGS) offer valuable alternatives for dimensionality reduc-
tion and feature prioritization [12,13]. Non-parametric statistical
methods like Spearman’s rho and Kendall’s tau can detect monotonic
associations without linearity, enhancing both precision and interpret-
ability [14,15]. These approaches suit translational biomarker research,
providing clear and trustworthy insights for clinical decision-making
and stakeholder communication.

In conclusion, while Zhang et al.’s study contributes to predictive
oncology, its reliance on linear modeling and SHAP interpretation limits
biological insight. Future research should prioritize robust, non-
parametric approaches to ensure interpretive validity, especially in
biomarker discovery where clinical decisions depend on trustworthy
feature relevance.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.radonc.2025.111140.
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