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Letter to the Editor

Zhang et al. developed machine learning (ML) models to predict 
acute diarrhoea in rectal cancer patients undergoing chemo
radiotherapy, warranting further discussion regarding interpretability 
and methodological bias [1]. Zhang et al. used logistic regression to 
predict a ΔG ≥ 2 increase in acute diarrhoea toxicity and applied 
SHapley Additive exPlanations (SHAP) to identify key predictors, 
including small bowel V10Gy, treatment arm, age, and performance 
status. While the study offers valuable insights, its methodology raises 
important concerns regarding interpretability and bias. In the ‘Methods 
and Materials’ section, Zhang et al. explicitly state, “Logistic regression 
was selected for ΔG ≥ 2 prediction due to its simplicity and easy 
interpretation.” However, this choice raises two critical methodological 
concerns.

First, achieving high predictive accuracy for ΔG ≥ 2 (AUROC = 0.71) 
does not guarantee reliable or consistent feature importance rankings. 
As emphasized in numerous studies, predictive performance alone does 
not guarantee that the features identified are meaningful or reliable 
[2–5]. Overreliance on accuracy metrics can obscure the interpretive 
validity of the model’s outputs. Supplementary material includes more 
discussion and references. Second, logistic regression is a logit-linear 
and parametric model, assuming fixed functional forms and logit- 
linear relationships between predictors and the log-odds of the 
outcome [6–8]. While its simplicity and interpretability are appealing, 
these characteristics make it ill-suited for modeling complex biological 
phenomena, which often involve non-linear interactions and non- 
parametric distributions. As a result, genuine non-linear patterns may 
be entirely overlooked, leading to an incomplete or even misleading 
understanding of acute diarrhoea risk.

Additionally, although SHAP values aim to clarify feature impor
tance, they can inherit and sometimes amplify biases from the under
lying model [9–11]. This dependency is evident in the formulation 
‘explain = SHAP(model)’, which ties the explanation directly to the 
model’s logic. In Zhang et al.’s pipeline, both logistic regression and 

SHAP are susceptible to bias, and their combination illustrates a com
mon pitfall in ML-based biomarker discovery. When linearity assump
tions fail to capture biological complexity, feature importance estimates 
become unstable. The cascading amplification of bias raises concerns 
about the interpretive validity of identified features. Generally, vali
dating feature importance is difficult without ground truth; high 
dimensionality and multicollinearity amplify model-specific biases, 
destabilizing rankings and obscuring biological relevance.

To improve acute diarrhoea risk assessment reliability, a compre
hensive analytical framework is needed. This framework should handle 
complex clinical and biomarker data, incorporating methods for non- 
linear patterns and multicollinearity reduction. Unsupervised tech
niques such as Feature Agglomeration (FA) and Highly Variable Gene 
Selection (HVGS) offer valuable alternatives for dimensionality reduc
tion and feature prioritization [12,13]. Non-parametric statistical 
methods like Spearman’s rho and Kendall’s tau can detect monotonic 
associations without linearity, enhancing both precision and interpret
ability [14,15]. These approaches suit translational biomarker research, 
providing clear and trustworthy insights for clinical decision-making 
and stakeholder communication.

In conclusion, while Zhang et al.’s study contributes to predictive 
oncology, its reliance on linear modeling and SHAP interpretation limits 
biological insight. Future research should prioritize robust, non- 
parametric approaches to ensure interpretive validity, especially in 
biomarker discovery where clinical decisions depend on trustworthy 
feature relevance.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.radonc.2025.111140.
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