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A B S T R A C T

In medical machine learning (ML), a fundamental methodological distinction exists between optimizing model 
performance for predictive tasks and pursuing causal inference for mechanistic interpretation. Achieving high 
predictive accuracy does not necessarily imply that a model can uncover the true physiological mechanisms 
underlying the data. This letter addresses a critical interpretational challenge in medical machine learning, 
building upon Yuyang Yan et al.’s valuable work on exacerbation classification in asthma and COPD. While their 
multi-feature fusion model, particularly comprising models such as K-Nearest Neighbors (KNN), Support Vector 
Machines (SVM), Random Forest (RF), and Bidirectional Long Short-Term Memory (BiLSTM) demonstrates high 
predictive accuracy for respiratory exacerbations, we highlight that such performance alone does not guarantee 
reliable insights into feature importance. Complex tree-based models like RF, when interpreted via methods like 
SHapley Additive exPlanations (SHAP), can exhibit inherent biases, overemphasizing features used in early splits 
and reflecting what is important for their specific prediction rather than the true underlying physiological 
drivers. Validating feature importance remains challenging without ground truth, as different models often yield 
varying rankings. We argue that solely relying on model-dependent interpretations risks misrepresenting the 
actual mechanisms of complex medical phenomena. Therefore, we advocate for a robust analytical strategy that 
transcends mere predictive metrics. This involves a synergistic approach combining the predictive power of ML 
with impartial, complementary statistical methodologies—such as non-parametric correlation and mutual 
information—to ensure genuinely trustworthy scientific insights into the true drivers of respiratory 
exacerbations.

1. Letter to the editor

The application of machine learning (ML) in medicine typically 
serves two distinct methodological objectives. The first is performance 
optimization, which aims to maximize predictive metrics—such as ac
curacy or AUC—to develop effective diagnostic or prognostic models. 
The second is causal inference for mechanistic interpretation, which 
seeks to identify the true underlying drivers of a medical condition by 
analyzing the model’s internal logic, such as feature importance or 
learned representations. A common methodological pitfall is to conflate 
these objectives, mistakenly assuming that a model with high predictive 
performance is also valid for mechanistic interpretation. This assump
tion can lead to misleading conclusions about disease etiology and 
hinder the development of truly explanatory models.

The recent paper by Yuyang Yan et al. (2025) makes a valuable 
contribution to the classification of exacerbations in chronic respiratory 
diseases [1]. Their study develops a multi-feature fusion model that 
integrates various acoustic, text, and spectral features. Employing a suite 
of models including K-Nearest Neighbors (KNN), Support Vector Ma
chines (SVM), Random Forest (RF), and Bidirectional Long Short-Term 
Memory (BiLSTM), they achieved robust classification performance, 
with performance reaching up to an accuracy of 89.18 % and an F1 score 
of 82.50 %. A key aspect of their work was the subsequent feature 
importance analysis; to their credit, they applied SHapley Additive ex
Planations (SHAP) to all four of their ML models, revealing influential 

predictors. While these models’ predictive performance is noteworthy, it 
is crucial to recognize that high accuracy does not automatically vali
date its SHAP-based interpretations. This is a well-documented limita
tion in the ML field [2–7], as feature importance rankings can reflect 
model-specific biases rather than the true underlying drivers of a dis
ease without robust statistical validation. Further details are available in 
the supplementary material.

Unpacking the feature importance derived from sophisticated ma
chine learning architectures, particularly tree-based ensembles like RF, 
presents substantial methodological hurdles. Despite their formidable 
predictive capabilities, these algorithms yield feature importance scores 
that are inherently shaped by their internal mechanics, including their 
splitting heuristics and interaction management. A critical tendency of 
tree-based models is to disproportionately emphasize features that 
contribute only marginally to predictive accuracy. This bias is often 
exacerbated by early splits in the tree-building process, which can cause 
certain features to dominate the structure due to initial partitioning 
decisions rather than true relevance [8–13]. This has been empirically 
demonstrated using real-world datasets to result in misleading feature 
importance rankings, frequently underrepresenting variables with clear 
domain relevance [14].

The insights into feature importance presented by Yuyang Yan et al. 
are predicated on the outputs of their chosen best-performing ML model 
coupled with SHAP. Consequently, the intrinsic biases and operational 
characteristics of this particular ML model, alongside those of the 
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Explainable Artificial Intelligence (XAI) methodology itself, inevitably 
color the perceived significance of various features. Given that SHAP is 
intrinsically linked to the models it interprets, it can either mirror or 
amplify these inherent model biases. This inherent reliance on the model 
means that the hierarchy of features revealed primarily reflects what is 
critical for that specific model’s predictions and explanations, rather 
than unequivocally representing the true underlying drivers of exacer
bation [15–19].

Fundamentally, substantiating feature importance is fraught with 
challenges given the absence of ground truth. Distinct models, owing to 
their differing methodologies and intrinsic biases, frequently produce 
divergent rankings. Indeed, the very act of comparing feature impor
tances from models known to yield inconsistent or unreliable rankings 
across different algorithms, even on the same dataset, further compli
cates the interpretation. While Yuyang Yan et al. primarily centered 
their discussion on their best-performing model’s performance and 
SHAP-based interpretation, the broader issue of varying feature impor
tances across different models persists. In the realm of medical in
vestigations, intricate feature sets potentially exhibiting collinearity can 
further complicate interpretation and exacerbate these issues, making it 
arduous to confidently pinpoint the actual determinants solely through 
model-dependent analysis. These factors underscore that superior pre
dictive accuracy does not, by itself, assure a trustworthy interpretation 
of feature importance from biased models and XAI techniques.

To illustrate the potential clinical risks of misinterpreting feature 
importance, we present the following illustrative scenario, consistent 
with the findings of the target study. Suppose SHAP analysis ranks 
Loudness above Mel-Frequency Cepstral Coefficients (MFCC) 6 in pre
dicting COPD exacerbations from patient speech recordings. Loudness is 
intuitive and clinically interpretable, often linked to breathlessness, 
while MFCC6—reflecting subtle vocal tract changes—is abstract. Given 
this ranking, clinicians may reasonably trust SHAP and prioritize 
Loudness in their decision-making. However, Loudness typically de
clines only after significant respiratory distress, making it a late-stage 
indicator. In contrast, MFCC6 may capture early physiological 
changes, potentially offering a more proactive signal for intervention. 
This scenario illustrates how interpretability and SHAP-based rankings, 
while helpful, can lead to overlooking less intuitive features that may be 
more clinically valuable.

To navigate the identified limitations in discerning feature impor
tance from complex ML and XAI approaches, a robust analytical 
framework is imperative. Such a framework must commence with a 
profound comprehension of the data’s inherent characteristics and the 
fundamental physiological processes governing exacerbations. Beyond 
mere model-derived metrics, it is vital to rigorously investigate the 
statistical relationships between variables, encompassing complex, non- 
monotonic associations, by deploying appropriate non-parametric 
methods. Furthermore, rigorous statistical validation, incorporating 
techniques like hypothesis testing, is indispensable to confirm that 
findings are not mere artifacts of the modeling procedure but genuinely 
reflect underlying relationships.

Rather than exclusively leaning on ML models and their embedded 
interpretability tools for feature selection and behavioral understanding, 
we advocate for a synergistic paradigm. This entails seamlessly inte
grating the predictive power of ML with impartial and rigorous statis
tical methodologies, such as Spearman’s rho and Kendall’s tau, which 
are exceptionally adept at characterizing monotonic relationships 
[20–21]. Crucially, because these methods operate on data ranks rather 
than raw numerical values, they are inherently robust to outliers and 
non-normally distributed data—conditions frequently encountered in 
clinical datasets. This makes them well-suited to provide a stable, 
model-independent baseline for assessing feature associations. For 
delving into more intricate dependencies, including non-monotonic in
teractions among variables, alternative non-parametric avenues like 
Mutual Information and Total Correlation offer invaluable perspectives 
[22–25]. This is particularly vital in medicine, where biological 

relationships are often non-linear—such as U-shaped dose-response 
curves—and may be overlooked by simpler correlation metrics. 
Mutual Information can reveal these complex associations without 
making prior assumptions about their functional form. By prioritizing 
foundational statistical principles and employing methods capable of 
uncovering a diverse spectrum of variable relationships, researchers can 
significantly bolster the credibility and reliability of feature importance 
assessments and model interpretations within clinical modeling 
domains.

In practice, statistical validation should be the first step when 
interpreting the relationship between features and outcomes. Before 
turning to ML models or tools like SHAP, it is essential to assess each 
feature’s association with the outcome using standard statistical meth
ods—such as Spearman’s rho and corresponding p-values. These provide 
an objective, model-independent basis for evaluating feature relevance. 
If ML models or SHAP are used for feature interpretation, their outputs 
must be critically examined. Specifically, the feature importance rank
ings they produce should be compared against the statistically derived 
rankings. Features that are emphasized by the model but lack statistical 
significance should be treated with caution, as they may reflect model- 
specific biases rather than genuine associations. In this sense, statistical 
validation is a necessary safeguard against overinterpreting model- 
driven explanations.

In conclusion, while Yuyang Yan et al. offer a highly accurate multi- 
feature fusion model for exacerbation classification, our letter un
derscores a crucial challenge in medical modeling. The inherent con
straints of ML and XAI tools, notably the best-performing model and 
SHAP employed for interpretation, mean their derived features cannot 
be definitively assumed as the sole drivers of exacerbation changes [14]. 
High predictive performance in classification tasks does not inherently 
ensure reliable feature importance. Relying solely on such in
terpretations risks distorting the underlying mechanisms of complex 
medical conditions. Therefore, achieving truly credible scientific in
sights necessitates a robust strategy that thoughtfully combines ML’s 
predictive strength with the objective rigor of complementary statistical 
methods.
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