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In medical machine learning (ML), a fundamental methodological distinction exists between optimizing model
performance for predictive tasks and pursuing causal inference for mechanistic interpretation. Achieving high
predictive accuracy does not necessarily imply that a model can uncover the true physiological mechanisms
underlying the data. This letter addresses a critical interpretational challenge in medical machine learning,
building upon Yuyang Yan et al.’s valuable work on exacerbation classification in asthma and COPD. While their
multi-feature fusion model, particularly comprising models such as K-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Random Forest (RF), and Bidirectional Long Short-Term Memory (BiLSTM) demonstrates high
predictive accuracy for respiratory exacerbations, we highlight that such performance alone does not guarantee
reliable insights into feature importance. Complex tree-based models like RF, when interpreted via methods like
SHapley Additive exPlanations (SHAP), can exhibit inherent biases, overemphasizing features used in early splits
and reflecting what is important for their specific prediction rather than the true underlying physiological
drivers. Validating feature importance remains challenging without ground truth, as different models often yield
varying rankings. We argue that solely relying on model-dependent interpretations risks misrepresenting the
actual mechanisms of complex medical phenomena. Therefore, we advocate for a robust analytical strategy that
transcends mere predictive metrics. This involves a synergistic approach combining the predictive power of ML
with impartial, complementary statistical methodologies—such as non-parametric correlation and mutual
information—to ensure genuinely trustworthy scientific insights into the true drivers of respiratory

exacerbations.

1. Letter to the editor

The application of machine learning (ML) in medicine typically
serves two distinct methodological objectives. The first is performance
optimization, which aims to maximize predictive metrics—such as ac-
curacy or AUC—to develop effective diagnostic or prognostic models.
The second is causal inference for mechanistic interpretation, which
seeks to identify the true underlying drivers of a medical condition by
analyzing the model’s internal logic, such as feature importance or
learned representations. A common methodological pitfall is to conflate
these objectives, mistakenly assuming that a model with high predictive
performance is also valid for mechanistic interpretation. This assump-
tion can lead to misleading conclusions about disease etiology and
hinder the development of truly explanatory models.

The recent paper by Yuyang Yan et al. (2025) makes a valuable
contribution to the classification of exacerbations in chronic respiratory
diseases [1]. Their study develops a multi-feature fusion model that
integrates various acoustic, text, and spectral features. Employing a suite
of models including K-Nearest Neighbors (KNN), Support Vector Ma-
chines (SVM), Random Forest (RF), and Bidirectional Long Short-Term
Memory (BiLSTM), they achieved robust classification performance,
with performance reaching up to an accuracy of 89.18 % and an F1 score
of 82.50 %. A key aspect of their work was the subsequent feature
importance analysis; to their credit, they applied SHapley Additive ex-
Planations (SHAP) to all four of their ML models, revealing influential
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predictors. While these models’ predictive performance is noteworthy, it
is crucial to recognize that high accuracy does not automatically vali-
date its SHAP-based interpretations. This is a well-documented limita-
tion in the ML field [2-7], as feature importance rankings can reflect
model-specific biases rather than the true underlying drivers of a dis-
ease without robust statistical validation. Further details are available in
the supplementary material.

Unpacking the feature importance derived from sophisticated ma-
chine learning architectures, particularly tree-based ensembles like RF,
presents substantial methodological hurdles. Despite their formidable
predictive capabilities, these algorithms yield feature importance scores
that are inherently shaped by their internal mechanics, including their
splitting heuristics and interaction management. A critical tendency of
tree-based models is to disproportionately emphasize features that
contribute only marginally to predictive accuracy. This bias is often
exacerbated by early splits in the tree-building process, which can cause
certain features to dominate the structure due to initial partitioning
decisions rather than true relevance [8-13]. This has been empirically
demonstrated using real-world datasets to result in misleading feature
importance rankings, frequently underrepresenting variables with clear
domain relevance [14].

The insights into feature importance presented by Yuyang Yan et al.
are predicated on the outputs of their chosen best-performing ML model
coupled with SHAP. Consequently, the intrinsic biases and operational
characteristics of this particular ML model, alongside those of the
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Explainable Artificial Intelligence (XAI) methodology itself, inevitably
color the perceived significance of various features. Given that SHAP is
intrinsically linked to the models it interprets, it can either mirror or
amplify these inherent model biases. This inherent reliance on the model
means that the hierarchy of features revealed primarily reflects what is
critical for that specific model’s predictions and explanations, rather
than unequivocally representing the true underlying drivers of exacer-
bation [15-19].

Fundamentally, substantiating feature importance is fraught with
challenges given the absence of ground truth. Distinct models, owing to
their differing methodologies and intrinsic biases, frequently produce
divergent rankings. Indeed, the very act of comparing feature impor-
tances from models known to yield inconsistent or unreliable rankings
across different algorithms, even on the same dataset, further compli-
cates the interpretation. While Yuyang Yan et al. primarily centered
their discussion on their best-performing model’s performance and
SHAP-based interpretation, the broader issue of varying feature impor-
tances across different models persists. In the realm of medical in-
vestigations, intricate feature sets potentially exhibiting collinearity can
further complicate interpretation and exacerbate these issues, making it
arduous to confidently pinpoint the actual determinants solely through
model-dependent analysis. These factors underscore that superior pre-
dictive accuracy does not, by itself, assure a trustworthy interpretation
of feature importance from biased models and XAI techniques.

To illustrate the potential clinical risks of misinterpreting feature
importance, we present the following illustrative scenario, consistent
with the findings of the target study. Suppose SHAP analysis ranks
Loudness above Mel-Frequency Cepstral Coefficients (MFCC) 6 in pre-
dicting COPD exacerbations from patient speech recordings. Loudness is
intuitive and clinically interpretable, often linked to breathlessness,
while MFCC6—reflecting subtle vocal tract changes—is abstract. Given
this ranking, clinicians may reasonably trust SHAP and prioritize
Loudness in their decision-making. However, Loudness typically de-
clines only after significant respiratory distress, making it a late-stage
indicator. In contrast, MFCC6 may capture early physiological
changes, potentially offering a more proactive signal for intervention.
This scenario illustrates how interpretability and SHAP-based rankings,
while helpful, can lead to overlooking less intuitive features that may be
more clinically valuable.

To navigate the identified limitations in discerning feature impor-
tance from complex ML and XAI approaches, a robust analytical
framework is imperative. Such a framework must commence with a
profound comprehension of the data’s inherent characteristics and the
fundamental physiological processes governing exacerbations. Beyond
mere model-derived metrics, it is vital to rigorously investigate the
statistical relationships between variables, encompassing complex, non-
monotonic associations, by deploying appropriate non-parametric
methods. Furthermore, rigorous statistical validation, incorporating
techniques like hypothesis testing, is indispensable to confirm that
findings are not mere artifacts of the modeling procedure but genuinely
reflect underlying relationships.

Rather than exclusively leaning on ML models and their embedded
interpretability tools for feature selection and behavioral understanding,
we advocate for a synergistic paradigm. This entails seamlessly inte-
grating the predictive power of ML with impartial and rigorous statis-
tical methodologies, such as Spearman’s rho and Kendall’s tau, which
are exceptionally adept at characterizing monotonic relationships
[20-21]. Crucially, because these methods operate on data ranks rather
than raw numerical values, they are inherently robust to outliers and
non-normally distributed data—conditions frequently encountered in
clinical datasets. This makes them well-suited to provide a stable,
model-independent baseline for assessing feature associations. For
delving into more intricate dependencies, including non-monotonic in-
teractions among variables, alternative non-parametric avenues like
Mutual Information and Total Correlation offer invaluable perspectives
[22-25]. This is particularly vital in medicine, where biological
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relationships are often non-linear—such as U-shaped dose-response
curves—and may be overlooked by simpler correlation metrics.
Mutual Information can reveal these complex associations without
making prior assumptions about their functional form. By prioritizing
foundational statistical principles and employing methods capable of
uncovering a diverse spectrum of variable relationships, researchers can
significantly bolster the credibility and reliability of feature importance
assessments and model interpretations within clinical modeling
domains.

In practice, statistical validation should be the first step when
interpreting the relationship between features and outcomes. Before
turning to ML models or tools like SHAP, it is essential to assess each
feature’s association with the outcome using standard statistical meth-
ods—such as Spearman’s rho and corresponding p-values. These provide
an objective, model-independent basis for evaluating feature relevance.
If ML models or SHAP are used for feature interpretation, their outputs
must be critically examined. Specifically, the feature importance rank-
ings they produce should be compared against the statistically derived
rankings. Features that are emphasized by the model but lack statistical
significance should be treated with caution, as they may reflect model-
specific biases rather than genuine associations. In this sense, statistical
validation is a necessary safeguard against overinterpreting model-
driven explanations.

In conclusion, while Yuyang Yan et al. offer a highly accurate multi-
feature fusion model for exacerbation classification, our letter un-
derscores a crucial challenge in medical modeling. The inherent con-
straints of ML and XAl tools, notably the best-performing model and
SHAP employed for interpretation, mean their derived features cannot
be definitively assumed as the sole drivers of exacerbation changes [14].
High predictive performance in classification tasks does not inherently
ensure reliable feature importance. Relying solely on such in-
terpretations risks distorting the underlying mechanisms of complex
medical conditions. Therefore, achieving truly credible scientific in-
sights necessitates a robust strategy that thoughtfully combines ML’s
predictive strength with the objective rigor of complementary statistical
methods.
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