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To the Editor,
Henriksen et al., in “Maximizing lung cancer screening in

high-risk population leveraging ML-developed risk prediction
algorithms: Danish retrospective validation of LungFlag,” present an
impressive machine learning (ML)-based risk prediction algorithm,
LungFlag, designed to maximize lung cancer screening in high-risk
populations and support early detection.1 While their approach
demonstrates acceptable predictive performance, it raises impor-
tant concerns regarding the reliability of model interpretability that
warrant further discussion. A review of the literature reveals that
the LungFlag model, developed by Medial EarlySign, is based on
the XGBoost algorithm and utilizes ML techniques to predict lung
cancer risk.2 Their model has achieved performance metrics in both
LC fast-track clinic patients (Population A) and outpatients with
chronic obstructive pulmonary disease (COPD) (Population B),
with LungFlag achieving an AUC of 0.63 in Population A. They
identified smoking, age, and COPD as key predictors, and further
highlighted that LungFlag identified high-risk individuals who were
generally younger compared to those identified by PLCOm2012.
While their study offers valuable insights and provides explain-
ability through visualized clinical feature importance scores via
SHapley Additive exPlanations (SHAP) values, it also presents criti-
cal methodological concerns that require further analysis.

It is important to note that, although a positive accuracy (AUC
of 0.63) was reported, predictive performance and the reliability
of feature importance are conceptually distinct. As supported by
over 300 peer-reviewed articles, even high predictive metrics do
not necessarily imply trustworthy or consistent feature importance
rankings.3-5 A more detailed discussion and supporting references
are provided in the supplementary material. Interpreting feature
importance in complex ML models such as XGBoost presents
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notable methodological challenges, particularly in clinical applica-
tions.6-9 While these models offer considerable predictive capabil-
ities, their internal mechanisms, such as tree-building logic and
handling of feature interactions, can introduce structural biases
that may distort the interpretation of feature relevance. Specifically,
XGBoost tends to overemphasize features used in early splits of
decision trees, potentially leading to skewed assessments of clinical
factor importance.

Relatedly, the issue of multicollinearity among predictors under-
mines the reliability of importance estimates. When features are
highly correlated, tree-based models may arbitrarily favor one over
others, obscuring the collective contribution these features make to
the outcome. Such models often overlook joint variance and mutual
interactions, resulting in interpretations that can be misleading,
especially in high-dimensional clinical datasets. Exacerbating these
concerns, ML models optimized for predictive accuracy are prone
to overfitting in noisy and heterogeneous clinical environments.
Overfitting risks capturing spurious patterns rather than meaning-
ful clinical signals, further distorting feature importance scores and
compromising the model’s interpretability and reliability in real-
world applications.

Additionally, Henriksen et al. feed the output of the XGBoost
model into SHAP for post hoc explanation. While this is a widely
adopted practice, it raises significant interpretability concerns.
SHAP explanations are fundamentally model-dependent, as they
are derived directly from the model’s predictions.10,11 This depen-
dency means that any biases embedded in the model—such as those
arising from tree-splitting heuristics or overfitting—are inherited
and potentially amplified by SHAP. In the presence of collinearity,
SHAP tends to distribute contributions across correlated features,
thereby diluting their apparent importance. Furthermore, SHAP
may generate feature combinations that do not exist in empirical
data distribution, leading to misleading or clinically implausible
interpretations.

A major challenge in validating feature importance lies in the
absence of ground truth. Different models employ distinct mecha-
nisms for estimating importance, resulting in inconsistent and
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often contradictory rankings. This issue is exacerbated in high-
dimensional settings, where complex interactions and collinear-
ity obscure the true contribution of individual features. In clini-
cal datasets, which are inherently noisy and heterogeneous, models
may capture spurious correlations rather than meaningful signals,
producing unreliable and unstable importance scores. Moreover, the
sensitivity of feature importance to minor changes in data or model
configuration undermines reproducibility and poses serious risks to
clinical credibility and decision-making.

To overcome methodological limitations and improve the reliabil-
ity of health risk assessments, a more robust and multi-dimensional
analytical framework is essential. This framework should reflect the
complexity of clinical data and incorporate methods capable of
capturing nonlinear relationships. Unsupervised techniques such as
Feature Agglomeration (FA) and, where applicable, Highly Variable
Gene Selection (HVGS)12,13 offer valuable alternatives. In addition,
nonparametric statistical methods like Spearman’s rho and Kendall’s
tau14,15 can detect monotonic associations without assuming linear-
ity, enhancing both precision and interpretability. These approaches
are particularly useful in translational biomarker research, where
clear and trustworthy insights must inform clinical decisions. Their
interpretability also facilitates communication across diverse health-
care stakeholders, helping translate statistical findings into action-
able outcomes. Ultimately, integrating these methods is key to
generating insights that are accurate, reproducible, and clinically
meaningful.

In conclusion, while ML models such as XGBoost, as imple-
mented in LungFlag, demonstrate strong predictive capabilities for
risk assessment, their inherent biases and the limitations of post hoc
explanation methods such as SHAP raise serious concerns about
interpretability. SHAP explanations are derived directly from the
model’s predictions, which means they reflect the internal logic
of the model rather than objective feature relevance. This depen-
dency can compromise the reliability of insights, especially in clini-
cal contexts where transparency is essential. In oncology, where
decisions must be both accurate and explainable, relying solely
on predictive performance is insufficient. Interpretability must be
robust, reproducible, and clinically grounded. To achieve this, a
comprehensive approach is needed that combines ML with rigor-
ous statistical validation. Such integration is essential to ensure
that AI-driven insights are not only accurate but also clinically
meaningful, trustworthy, and actionable in high-stakes medical
decision-making.
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