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Letter to the editor

Serretti et al. (2025) proposed a machine learning framework using 
eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlana
tion (SHAP) to predict treatment-resistant depression (TRD) in a large, 
multicenter cohort of 2953 patients. They utilized eXtreme Gradient 
Boosting (XGBoost), achieving a ROC AUC of 0.80, and subsequently 
applied SHapley Additive exPlanation (SHAP) to assess feature impor
tance. This analysis highlighted key predictors such as Duration of 
Current Episode, Duration of Disease, and other indicators of illness 
chronicity. However, while the model demonstrated strong predictive 
performance, it is important to note that high accuracy in target pre
diction does not necessarily validate the reliability of feature importance 
rankings. This distinction raises concerns about potential biases in the 
analytical pipeline, which may undermine the clinical translatability of 
the identified predictors. Overreliance on predictive accuracy to justify 
feature relevance is a well-known issue (Fisher et al., 2019). A signifi
cant body of literature has highlighted that strong prediction does not 
ensure meaningful attribution. Feature importance rankings often 
reflect model artifacts rather than true causal relationships.

Tree-based machine learning models, including XGBoost, are known 
to exhibit biases in feature importance estimation—particularly a ten
dency to favor features that enable early splits in the decision tree. This 
bias is especially pronounced in high-dimensional clinical datasets, 
where complex correlations and multicollinearity are common, and the 
risk of overfitting is elevated (Ugirumurera et al., 2024). In Serretti 
et al.’s study, several top-ranked predictors fall into this category, 
raising concerns about potential multicollinearity and interpretability. 
Given the absence of a definitive ground truth for feature relevance, and 
the challenges in disentangling correlated effects, feature importance 
rankings in such models should be interpreted with caution, as they may 
not reliably reflect underlying causal relationships.

Furthermore, SHAP’s reliance on the model’s internal logic means its 
attributions are shaped by the structural assumptions and biases of the 
algorithm it explains. In the case of XGBoost, the presence of correlated 
features can lead SHAP to distribute importance arbitrarily, resulting in 
unstable and potentially misleading rankings. SHAP does not correct for 
these distortions; its outputs reflect the model’s internal heuristics rather 

than the independent clinical relevance of the predictors. Therefore, 
interpreting SHAP-derived feature importance requires model-agnostic 
validation and careful scrutiny.

To address these limitations, a more robust analytical framework is 
needed—one that goes beyond model-dependent attribution and ac
counts for the structural complexity of clinical data. Techniques such as 
Feature Agglomeration (Zhang et al., 2020) and Highly Variable Gene 
Selection (Xie et al., 2025) offer unsupervised approaches to dimen
sionality reduction that can mitigate issues arising from multi
collinearity and feature redundancy. Complementing these with 
non-parametric statistical methods like Spearman’s rho or Kendall’s 
tau enables the detection of non-linear and rank-based associations, 
enhancing interpretability. Together, these strategies provide a more 
stable foundation for identifying clinically meaningful predictors and 
improving the translatability of machine learning findings in psychiatric 
research.
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