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Dor Atias et al. used machine learning (ML) models to predict 
extreme longevity and compared them with traditional methods [1]. 
Their work represents a significant contribution to the field, though 
several methodological aspects warrant further discussion. They 
employed three prediction models: logistic regression (LR), a traditional 
statistical method, and two machine learning (ML) models—generalized 
least absolute shrinkage and selection operator (LASSO) regression and 
extreme gradient boosting (XGBoost). They designed a modeling pipe
line to predict extreme longevity using a cohort of approximately 10,000 
men. Notably, XGBoost achieved the highest predictive performance 
with an ROC-AUC of 0.72, outperforming LASSO (0.71) and LR (0.69). 
Their analysis highlighted systolic blood pressure, smoking status, and a 
history of myocardial infarction as the most influential factors in pre
dicting longevity.

While the high predictive accuracy of the XGBoost model is note
worthy, it does not necessarily ensure the reliability of its feature 
importance rankings. This disconnect between predictive performance 
and interpretive validity has been highlighted in numerous studies, as 
detailed in the supplementary material, which includes an extensive list 
of supporting references [2–4]. Notably, the combined use of tree-based 
algorithms like XGBoost and regularized linear models such as LASSO 
regression can undermine the stability and consistency of feature 
importance estimates [5–9]. Gradient boosting decision trees (GBDT), 
including XGBoost, are known to introduce biases in feature importance 
due to the nature of their tree-building process. Features selected for 
early splits are often overemphasized, regardless of their actual pre
dictive value. Consequently, the resulting importance scores may reflect 
what optimizes model performance rather than what truly drives 
extreme longevity, potentially distorting the roles of factors such as 
systolic blood pressure, smoking status, and history of myocardial 
infarction.

These concerns are further amplified by the use of SHapley Additive 
exPlanations (SHAP) and similar feature attribution methods, which are 
commonly employed to interpret model outputs [10–13]. Because these 
explanations are derived directly from the model’s predictions, they 
inherently reflect any biases present in the underlying algorithm. As a 
result, even models with comparable predictive accuracy may assign 

markedly different levels of importance to individual features, under
scoring the instability of feature relevance across models. This issue of 
model dependence becomes particularly evident in the study’s focus on 
non-linear thresholds derived from SHAP analysis. For instance, patterns 
such as a decline in predicted longevity when diastolic blood pressure 
exceeds 93 mmHg or the identification of an HDL level above 42 mg/dl 
as a favorable cutoff highlight the interpretive challenges of post hoc 
explanations. Although these thresholds may appear clinically mean
ingful, they could also represent algorithmic artifacts created by the 
optimal partitioning strategy of Gradient Boosting Decision Trees 
(GBDT) under the constraints of the dataset. Therefore, such findings 
should be interpreted with caution, and independent validation is 
essential to confirm their biological plausibility and robustness. These 
interpretative challenges are further exacerbated by the methodological 
limitations of the benchmark model itself, logistic regression [14–19]. 
As a parametric model, it assumes a strictly linear relationship between 
input variables and the target outcome—an assumption often inade
quate for capturing the complex, non-linear interactions typical of 
epidemiological data.

Beyond these issues, a central challenge in interpreting ML models 
lies in validating feature importance in the absence of ground truth. 
Without a definitive reference, importance rankings remain highly 
model-dependent and susceptible to bias. This limitation is particularly 
evident in the present study, which involves complex, high-dimensional, 
and collinear features. Such characteristics not only hinder interpret
ability but also obscure the individual contributions of features, 
increasing the risk of overfitting and reducing the generalizability of 
findings. Moreover, the instability of importance measures is further 
exacerbated by the intricate structure of the feature space, making it 
difficult to draw robust, causally meaningful conclusions from the model 
outputs.

To address these methodological limitations and improve predictive 
reliability, a more comprehensive analytical framework is needed. This 
framework should account for the complexity of the data and incorpo
rate methods that can capture non-linear patterns and reduce multi
collinearity. Such a framework is particularly important for validating 
interaction effects reported in the original study, including the 
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interpretation that a positive correlation between systolic blood pressure 
(SBP) and body mass index (BMI) may attenuate SBP’s adverse impact 
on longevity. Determining whether this interaction reflects a genuine 
biological phenomenon or a model-driven artifact demands independent 
verification. Unsupervised techniques such as Feature Agglomeration 
and Highly Variable Gene Selection offer robust options for dimen
sionality reduction and feature prioritization, enabling the identification 
of stable associations [20,21]. In addition, non-parametric methods like 
Spearman’s rho and Kendall’s tau allow independent assessment of rank 
correlations among key variables (e.g., SBP, BMI, and longevity) without 
relying on model-specific assumptions [22,23]. These approaches not 
only improve interpretability but also strengthen reproducibility—an 
essential requirement for translating statistical findings into actionable 
insights in epidemiological research.

In conclusion, although machine learning techniques such as 
XGBoost and feature contribution analysis provide strong predictive 
capabilities, they are prone to biases that can limit interpretability, 
especially in complex applications like longevity prediction. To mitigate 
these limitations, it is important to combine ML with robust statistical 
methods that support dimensionality reduction and validation. This 
integrated approach enhances the reliability of predictive assessments 
and enables insights that are both accurate and grounded in biological 
and epidemiological reality. Future research should aim to develop 
frameworks that maintain a balance between predictive accuracy, 
interpretability, and biological relevance.
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