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A B S T R A C T

Meng et al. (2025) introduce a physics-informed deep learning (PIDL) framework for predicting porosity in 
aluminum alloy laser welding. Their PIDL model, assessed via SHAP, exhibited superior predictive performance 
over conventional deep learning models, demonstrated by a 41% reduction in mean square error (MSE). How-
ever, feature importances derived from SHAP may be biased, potentially misrepresenting the genuine physical 
influences on porosity formation. High predictive accuracy does not automatically ensure the reliability of 
feature importance metrics. This letter underscores the critical need for rigorous statistical validation for reliable 
feature importance assessments. Integrating robust statistical methods like Spearman’s rho, Goodman-Kruskal’s 
gamma, Kendall’s tau, and Somers’ delta with machine learning enhances the credibility of insights in materials 
science and manufacturing. Future research should focus on combining ML with robust statistical analysis to 
improve feature importance reliability and deepen understanding of underlying physical mechanisms.

Meng et al.’s 2025 study, "Toward prediction and insight of porosity 
formation in laser welding: A physics-informed deep learning frame-
work," presents a PIDL framework for predicting porosity levels during 
laser beam welding of aluminum alloys [1]. Their research evaluated the 
PIDL output through SHapley Additive exPlanations (SHAP), high-
lighting the hierarchical importance of physical variables such as 
keyhole ratio and downward flow. They demonstrated the PIDL model’s 
superior predictive performance compared to a conventional deep 
learning model using only welding parameters, achieving a 41% 
reduction in mean square error (MSE). However, the prioritized feature 
importances derived from this PIDL model and SHAP may be influenced 
by bias, implying that the resulting hierarchy may not accurately reflect 
the true physical influence on porosity formation. We suggest incorpo-
rating robust statistical validation methods to address this potential 
issue and enhance the reliability of these findings.

While Meng et al. (2025) have made a significant contribution to 
advancing the understanding and prediction of porosity formation in 
laser welding, this letter raises critical concerns regarding the inter-
pretation of feature importances derived from their methodology. 
Although they clearly present their assessment of predictive perfor-
mance using metrics like MSE and maximum relative error, it is vital to 
distinguish between achieving a successful prediction and ensuring the 
reliability of the feature importance metrics derived from machine 
learning (ML) models [2,3]. Accurately predicting an outcome is distinct 
from gaining a dependable understanding of which input variables 
genuinely drive that outcome or the extent of their influence. As widely 
recognized in the ML community and supported by numerous publica-
tions, high predictive accuracy does not automatically ensure the val-
idity or interpretability of feature importance metrics derived from a 
model. Recognizing this difference is crucial when using model-based 
explanations to infer conclusions about the underlying physical mech-
anisms. According to established consensus, supported by over 100 

peer-reviewed articles, this distinction is critical [4–8]. A detailed dis-
cussion and supporting references are provided in the supplementary 
material.

Meng et al. employed a physics-informed deep learning (PIDL) 
framework utilizing a deep learning network (DNN) for prediction. 
While DNNs are powerful tools for this purpose, their complex archi-
tectures often result in learned representations that are closely tied to 
the specifics of the training data. The key point of discussion lies in the 
caution required when interpreting the results of such a DNN using 
SHAP values to determine feature importance, as achieving high pre-
diction accuracy does not automatically validate the reliability of these 
derived importances [9]. This is because the function ’explain = SHAP 
(model)’ fundamentally links SHAP to the underlying model, meaning 
SHAP values consequently inherit and may even exacerbate any biases 
present in the DNN’s learned representations or its predictions [10–14]. 
Despite SHAP’s widespread adoption, often attributed to its 
game-theoretic principles, and the availability of other interpretation 
methods like Permutation Importance or LIME, it is critically important 
to recognize that SHAP’s fundamental dependency means it acts as a 
mirror, reflecting and potentially amplifying the biases of the model it 
explains. Therefore, relying on SHAP values derived from a DNN to 
definitively determine true feature importance is problematic, as current 
techniques cannot fully eliminate the bias inherited through this inter-
pretation process.

A fundamental challenge in validating feature importance stems 
from the absence of true ground truth values. This lack means that 
validating the reliability of feature importance derived from complex 
models is inherently difficult. Consequently, different models, employ-
ing distinct methodologies, inevitably yield model-specific biases and 
varying feature rankings. A common and significant pitfall observed in 
many studies is the tendency to substitute prediction accuracy as a proxy 
for the reliability of feature importance assessment, often treating a 
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feature’s contribution to prediction performance as if it were its true 
physical significance. However, because ML models are optimized pri-
marily to maximize prediction accuracy, they may, in pursuit of even 
slight improvements, overfit or leverage patterns that distort the 
genuine feature importance ranking, leading to the differing outputs 
seen across various models.

To mitigate these limitations, a rigorous approach is essential, 
focusing on the nature of data distribution, the statistical relationships 
between variables, and statistical validation. Effective modeling strate-
gies depend on a thorough understanding of data distribution. Exploring 
complex variable relationships, particularly through non-parametric 
methods, is crucial. Furthermore, ensuring the statistical significance 
of results via hypothesis testing and p-value analysis is vital to prevent 
spurious conclusions. Robust statistical methodologies comprehensively 
address these critical considerations. Instead of relying solely on ma-
chine learning models and SHAP for feature selection, we advocate for a 
synergistic integration with unbiased, resilient statistical methods, 
notably Spearman’s rho and Kendall’s tau accompanied by p-value 
analysis [15,16]. These non-parametric methods are particularly effec-
tive in capturing monotonic relationships. Other suitable 
non-parametric methods include Total correlation Effective transfer 
entropy, effective for complex relationships like non-monotonic collin-
earity and interactions [17–20]. Emphasizing these statistical founda-
tions will significantly enhance the trustworthiness and credibility of 
feature importance evaluations in materials science and manufacturing 
process analysis.

In conclusion, while physics-informed deep learning techniques are 
effective for prediction, the inherent biases in the underlying deep 
learning models and their SHAP interpretations necessitate caution in 
relying solely on them for feature importance assessment. To address 
these limitations in analyzing porosity formation in laser welding, it is 
essential to integrate robust statistical methods and rigorous validation. 
This combined approach is vital for obtaining accurate and reliable in-
sights. Future research should focus on developing innovative method-
ologies that leverage both machine learning and statistical analysis to 
enhance the reliability of feature importance assessments.
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