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Letter to the Editor: Complementary statistical approaches for interpreting machine learning 
feature importance in osteoporosis risk
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A B S T R A C T

This paper comments on the valuable contribution by Carvalho and Gavaia regarding machine learning for 
osteoporosis risk prediction, particularly their use of a stacking ensemble model and feature importance analysis. 
While acknowledging the model’s high predictive accuracy, we raise a crucial concern: high accuracy does not 
inherently validate the reliability of feature importance interpretation. We discuss how the interpretation of 
feature importance from complex, model-dependent methods like those used can be influenced by model 
structure and data characteristics, potentially overemphasizing certain variables or reflecting model-specific 
relevance rather than true underlying causal drivers of osteoporosis risk. Validating feature importance is 
inherently difficult due to the absence of ground truth for causal relationships. To address these limitations and 
move beyond purely model-dependent predictive importance, we propose integrating complementary statistical 
methodologies, such as Spearman’s rho, Kendall’s tau, Mutual Information, and Total Correlation. These 
impartial and resilient methods can offer more robust insights into variable relationships. By combining pre-
dictive ML modeling with these statistical approaches, we aim to advance the understanding of complex health 
outcomes like osteoporosis in biomedical and healthcare applications, providing a more dependable assessment 
of feature importance and model behavior.

1. Introduction

The recent paper by Carvalho and Gavaia in Computers in Biology 
and Medicine, "Enhancing osteoporosis risk prediction using machine 
learning: A holistic approach integrating biomarkers and clinical data," 
makes a valuable contribution to the prediction of osteoporosis risk [1]. 
Their study evaluates the potential of a stacking ensemble machine 
learning model integrating biomarkers and clinical data for predicting 
osteoporosis risk using data from NHANES cycles 2007–2014. However, 
the reliance on complex machine learning (ML) models and the inter-
pretation of feature importance warrant further discussion.

Carvalho and Gavaia employed a stacking ensemble model 
combining four specialized ML models: Gradient Boosting, Random 
Forest, XGBoost, and LightGBM, with a logistic regression meta- 
classifier. They reported robust performance, achieving 93 % accuracy 
and an AUC of 0.94 through cross-validation. Beyond evaluating model 
performance, a key aspect of their work involved feature importance 
analysis based on the model’s output, revealing influential predictors 
such as age, arm muscle circumference, and body weight. This raises 
critical concerns about potential bias in the ranked features.

Although Carvalho and Gavaia have offered a novel method for 
predicting osteoporosis risk, this paper highlights a concern regarding 
how feature importance derived from ML models is interpreted. Their 
study prominently features the high predictive accuracy of their stacking 
ensemble model and then proceeds to analyze its feature importance. 
However, it’s vital to understand that achieving high predictive accu-
racy does not automatically confirm the reliability of the feature 
importance scores. While Carvalho and Gavaia’s goal is to pinpoint key 
osteoporosis risk factors through feature importance, the initial 

impressive prediction accuracy of their model could inadvertently imply 
that the subsequent feature importance interpretation is reliable. As 
demonstrated by over 300 previous studies, strong predictive perfor-
mance does not guarantee dependable feature importance interpretation 
[2–7]. More details and supporting literature can be found in the sup-
plementary material. Drawing from Carvalho and Gavaia’s research, we 
further examine this issue. We suggest incorporating complementary 
statistical methods to facilitate a more dependable understanding of 
feature importance, with the aim of improving methodologies in 
biomedical and healthcare fields.

2. Methodological limitations of ML

Interpreting complex machine learning models like Random Forest, 
Gradient Boosting, XGBoost, and LightGBM, particularly for under-
standing feature importance, presents methodological complexities. 
These models, while offering strong predictive power, can generate 
feature importance scores that are influenced by factors inherent in their 
structure and operation, such as splitting logic in tree-based models or 
the handling of feature interactions and multicollinearity [8–10]. This 
can lead to skewed assessments, potentially favoring certain variables or 
features with particular data structures, which can overemphasize the 
importance of features used in earlier splits [11–13].

The feature importance analysis employed in this study by Carvalho 
and Gavaia relies on the output of their stacking ensemble model. 
Consequently, the way the ensemble model integrates the predictions 
and feature handling characteristics of its base learners (Gradient 
Boosting, Random Forest, XGBoost, and LightGBM) can influence the 
perceived importance of features. While the reported feature importance 
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provides valuable insights into the model’s decision-making process, it is 
inherently tied to the specific model architecture and the way these 
algorithms interpret relationships within the data. This model- 
dependent nature means the ranked features reflect what is important 
for that specific model’s prediction, rather than definitively representing 
the true underlying causal drivers of osteoporosis risk.

Fundamentally, validating feature importance is challenging because 
the true causal relationships lack ground truth values. This highlights 
the difficulty of identifying the actual underlying causal factors or 
drivers using only feature analysis processes that are dependent on a 
specific model [14–18]. Acknowledging the limitations of relying solely 
on complex ML models for robust feature importance interpretation, this 
study suggests employing complementary statistical methodologies. 
These are intended to provide more objective insights into the connec-
tions between clinical variables and osteoporosis risk, thereby shifting 
the focus from model-specific predictive importance to understanding 
potential underlying mechanisms.

3. Proposed solutions

To address these limitations effectively, it is crucial to establish a 
comprehensive analytical framework that incorporates data character-
istics, the statistical relationships between variables, and rigorous vali-
dation. Successful modeling and interpretation are contingent upon a 
deep understanding of the underlying biological and clinical processes 
involved in osteoporosis. Exploring complex associations between var-
iables, particularly through non-parametric methods, is of paramount 
importance. Furthermore, verifying the statistical significance of find-
ings via hypothesis testing and p-value analysis is essential to prevent 
drawing inaccurate conclusions.

Instead of relying exclusively on complex machine learning models 
and their built-in interpretability techniques for identifying key features 
and understanding model behavior, we propose a synergistic approach 
that incorporates impartial, resilient statistical methods, such as 
Spearman’s rho and Kendall’s tau, particularly adept at characterizing 
monotonic relationships [19,20]. For more complex dependencies, 
including non-monotonic interactions among variables, alternative 
non-parametric methods like Mutual Information and Total Correlation 
offer valuable insights [21–24]. Prioritizing these statistical principles, 
combined with ML and domain expertise, will substantially bolster the 
credibility and dependability of feature importance and model behavior 
assessments in domains like biomedical and healthcare engineering.

4. Conclusion

In conclusion, the study by Carvalho and Gavaia provides a valuable 
model and identifies features relevant for osteoporosis risk prediction 
using their chosen methodology. However, as with many machine 
learning applications in complex biological systems, interpreting the 
identified features as definitive drivers of osteoporosis risk variability 
warrants careful consideration of methodological limitations and the 
inherent challenges of validation. Addressing the limitations of inter-
preting features solely through model-dependent approaches requires a 
broader strategy. To deepen understanding of complex health outcomes 
like osteoporosis, we should integrate predictive ML modeling with 
complementary statistical methodologies.
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