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A B S T R A C T

This correspondence critically examines the methodology of Schindele et al. (2025) on thyroid cancer recurrence 
prediction. While their interpretable XGBoost model achieved a high predictive accuracy of 95.8% and a 0.947 
AUROC, it is crucial to recognize that this predictive power does not justify the reliability of its derived feature 
importance rankings. As widely acknowledged in the literature, high predictive accuracy does not guarantee 
unbiased or reliable feature attribution. We underscore that gradient boosting decision tree (GBDT) models, 
including XGBoost, are prone to inherent biases in feature importance estimation, often due to overfitting. 
Furthermore, SHapley Additive exPlanations (SHAP), a widely adopted explainable AI (XAI) technique, can 
inherit and even amplify these biases, given its model-dependent nature. This raises concerns about the inter-
pretive validity of the identified risk factors. To mitigate these methodological limitations, we advocate for 
integrative analytical frameworks that combine machine learning with robust statistical and non-parametric 
approaches, such as Highly Variable Feature Selection (HVFS) and Independent Component Analysis (ICA). 
These multi-faceted strategies are indispensable for obtaining robust and interpretable insights into feature 
importance, warranting their prioritization in future research efforts.

1. Letter to the Editor

Schindele et al. (2025) present an interpretable XGBoost model for 
predicting thyroid cancer recurrence. However, their reliance on a single 
boosting algorithm and the subsequent interpretation of feature 
importance warrants further discussion [1]. They employed a data- 
driven machine learning (ML) approach, identifying predictors of 
differentiated thyroid cancer (DTC) recurrence from 114 clinical and 
biomarker features in a large patient cohort of 2,920 individuals. Spe-
cifically, they utilized an extreme gradient boosting (XGBoost) model as 
their primary ML algorithm, which achieved a high predictive accuracy 
of 95.8 % and an AUROC of 0.947 on the testing dataset. Subsequently, 
for factors that contributed to model prediction, SHapley Additive 
exPlanation (SHAP) values were used to interpret feature importance. 
Their analysis identified several categories of important features for 
thyroid cancer recurrence prediction, including tumor size, maximal 
thyroglobulin values, and maximal thyroglobulin antibody levels. While 
their approach represents a powerful and commonly adopted strategy 
for prediction, it raises concerns regarding the inherent biases of the 
chosen ML model and their subsequent impact on feature importance 
interpretation.

Although Schindele et al. (2025) have made a significant contribu-
tion through their large-scale, data-driven ML analysis to identify thy-
roid cancer recurrence risk factors, their reliance on boosting algorithms 
like XGBoost raises critical methodological concerns. While models such 
as XGBoost are widely adopted for their high predictive accuracy, it is 
crucial to recognize that this performance does not inherently validate 
the reliability of the derived feature importance. This disconnect is well- 
documented in the literature, with over 300 peer-reviewed studies 
supporting the assertion that predictive accuracy alone is insufficient for 

trustworthy feature attribution (see Supplementary Material).
XGBoost, an implementation of gradient boosting decision trees, 

chosen by the authors, like other tree-based models, exhibits inherent 
biases in feature importance calculations due to its tree building process. 
While XGBoost offers strong predictive power, it often generates feature 
importance scores that overemphasize features used in earlier splits 
[2–4]. Additionally, these scores are influenced by factors such as the 
model’s splitting logic, its handling of feature interactions, and multi-
collinearity [5–7]. This model-dependent nature suggests that the 
ranked features primarily reflect what is most advantageous for opti-
mizing the XGBoost model’s predictive performance, rather than serving 
as genuine indicators of the underlying causal drivers of thyroid cancer 
recurrence risk. This can lead to a skewed interpretation of factor 
importance, further highlighted by the frequent observation that 
different ML models produce conflicting rankings of predictive features.

Additionally, SHAP values, a widely employed eXplainable AI (XAI) 
method to interpret ML-derived feature importances, inherit and exac-
erbate biases from the underlying ML model [8–12]. The function of 
’explain = SHAP(model)’ underscores this dependency; since SHAP re-
lies on the model’s output for its explanations, it is inherently vulnerable 
to the model’s biases, leading to flawed interpretations and undermining 
the reliability of the analysis. Furthermore, Schindele et al.’s reliance on 
an XGBoost-SHAP pipeline, combining two inherently biased methods, 
represents a critical and frequently encountered pitfall. The claim that 
this pipeline successfully identified predictive features, even with 
nonlinearity and interactions considered, demands rigorous scrutiny. 
For this reason, the compounded biases from both the XGBoost model 
and the SHAP explanation method can severely exacerbate interpret-
ability issues.

Fundamentally, validating feature importance is exceptionally 
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challenging due to the absence of ground truth values, inevitably 
introducing model-specific biases and yielding inconsistent rankings. 
This issue is particularly evident in Schindele et al.’s study, where their 
complex feature sets, high dimensionality, and potential collinearity 
profoundly impede ML model interpretation, especially for thyroid 
cancer recurrence risk assessment. These factors severely complicate 
isolating individual feature effects, simultaneously elevating overfitting 
risk and causing models to capture noise instead of genuine signals. 
Furthermore, the complexity of features renders importance measures 
highly sensitive to minor data or model changes, compromising stability 
and reliability, thereby hindering consistent and reproducible research 
findings.

To address these methodological pitfalls and ensure more accurate 
interpretations in health risk assessment, a more robust, multi-faceted 
analytical framework is indispensable. Such an approach should ac-
count for the multifaceted nature of complex health data and incorpo-
rate methodologies better suited to capturing non-linearity. More 
methodologically robust approaches include unsupervised learning 
techniques like Feature Agglomeration (FA) or, where applicable, 
Highly Variable Gene Selection (HVGS) [13,14]. Additionally, non- 
linear non-parametric statistical methods such as Spearman’s rho or 
Kendall’s tau would be highly beneficial [15,16]. These methods spe-
cifically detect monotonic relationships without imposing linearity as-
sumptions, thereby capturing potentially non-linear associations with 
greater precision and reliability. Beyond their statistical appropriate-
ness, such non-parametric approaches offer enhanced inter-
pretability—a critical consideration in translational biomarker research 
where findings must guide clinical decision-making. This interpret-
ability advantage proves particularly valuable when communicating 
complex relationships to diverse stakeholders across the healthcare 
continuum, facilitating more effective translation from statistical find-
ings to actionable clinical insights. Ultimately, this multi-faceted 
approach is indispensable for generating accurate, reproducible, and 
clinically meaningful insights.

In conclusion, despite their powerful capabilities in feature selection, 
machine learning techniques like XGBoost and SHAP inherently possess 
biases and limitations, especially in complex domains such as health risk 
assessment. These challenges underscore the necessity of a multi-faceted 
approach, integrating robust statistical methodologies and rigorous 
validation. By complementing ML with robust statistical validation, re-
searchers can enhance interpretability and ensure more reliable out-
comes. Future research should, therefore, focus on pioneering hybrid 
methodologies that effectively integrate the strengths of both machine 
learning and traditional statistical analysis. Ultimately, such an inte-
grative approach is paramount for achieving accurate, reproducible, and 
clinically meaningful insights.
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