International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4, October 2001

Pakemon — A Rule-based Network Intrusion Detection System

Keiji Takeda T and Yoshiyasu Takefuji 1
 Graduate School of Media and Governance
1 Faculty of Environmental Information
Keio University
Endo 5322
Fujisawa Kanagawa 252-8520
Japan

Abstract
This paper describes design and implementation of “Pakemon”, a system that detects network intrusions and
their attempts by stealthy monitoring network traffic. Through the design of the system, knowledge about
intrusive network traffic was formulated as suspicious patterns. An operation model for network security by
knowledge sharing was proposed. Artifacts derived from this work have been distributed through the Internet
and widely used for real-world practices of intrusion detection. Rules to detect intrusions with this system
have been released and shared by third parties. By using this system, users can implement security
mechanisms that enable administrator {0 respond 1o network intrusions. The system works as a supplement of
the traditional preventive security mechanisms such as identification and authentication, access control and

encryption.

some statistical algorithms [9] [10]. Heberlein et.al.
[11] proposed an approach that applies the anomaly
detection mechanism to network traffic monitoring.

1 Introduction

Use of computer network, especially the Internet, is The problem of detecting suspicious activities on
increasingly important in the modern society. networks has been termed as network intrusion
Today, globally interconnected networks are critical detection [12].
clements of social infrastructure. In it’s definition, Data sources for most intrusion detection
computer security is based on the realization of system are local audit trails or network traffic.
confidentiality, integrity, and availability in computer Methodology of analysis can be divided into two
systems [1]. To achieve the objectives of computer categories: anomaly detection and misuse detection.
security, various preventive mechanisms, such as Anomaly detection refers to as detecting intrusions
identification and authentication, access control, and based on anomalous behavior of systems or users.
encryption have been utilized [2]. In contrast, misuse detection, alternatively called
Network intrusions are any actions aiming rule-based detection refers to as detecting intrusions
to compromise the goal of computer security from with pre-defined patterns of the behavior [13][14].
both internal and external sources of networks. Pakemon, the system that we describe in
Such intrusions may cause information leakage, this paper, is implemented as a network-based and
deletion or modification of resident data or software, rule-based intrusion detection system. A number of
denial of service, unauthorized use of systems and so similar systems have existed so far. Thus the
on [3]. objective of this paper is not to propose novel
It has been understood in the computer — methodology for intrusion detection but to present a
security fzon}munity that virtually all computer and detailed description of techniques to improve
communication systems are not immune to intrusions accuracy and performance of the system.

[4]. Computer systems sometimes have flaws.

Fmdn}g and fixing all 'of them are not feasible 2 Network-base d Intrusion Dete ction
technically and economically. Furthermore, even

with a system that has strong security mechanisms, SYStemS

internal abuses of the system are still difficult to

prevent [5]. . . In this paper, we focus on network and rule-based
: In response o these d}fﬁcultles, intrusion detection approach. The reason is that,
ls)urvelllance Ige%hanlsérps of C(;),Tgu,tle ; act1§1ty ha;e although there are many issues to be solved on the
u::g foroi%(;i;i fy[s])'/ster;lmt:foil;lels nallisxrl:goé fss;gtr;mz approach it is widely aci:epteq as a practical measure
; i : : to detect network intrusions in real world

and the1.r .atternpts, automated aud1§ trail analy§1s has T Advantages of network-based
been utilized to detect anomaly in the audit data intrusion detection approach include detection in
[71(8]. Most early works to detect network real-time manner and independency from operating

intrusion were anomaly detection approaches with systems to protect [11].

240

International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4, October 2001

A fault of the current network and
rule-based intrusion detection approach has been
published as “insertion and evasion” techniques [15].
Many intrusion detection systems fail to detect under
such evasion techniques. The evasion is done by
making differences between the traffic that an
intrusion detection system observes and the traffic

that the final destination (target host) receives. This
technique applies fragmentation, disorder,
duplication, overlap, insertion, evasion, and

de-synchronization at IP (Internet Protocol) or TCP
(Transfer Control Protocol) of the traffic. For
example, IP has fragmentation and de-fragmentation
functions in the protocol. A single IP packet can be
broken up into multiple fragmented packets. These
fragmented packets will be re-constructed at the
destination host. If an intrusion detection system
perform only simple pattern matching without
de-fragmentation, it fails to match the traffic to an
attack signature for complete single IP packet. The
same technique can also be applied to the TCP layer.
Fragmented IP packets and TCP segments have their
own id number in it. Scramble, disorder, duplicate
or overlap of them makes intrusion detection systems
difficult to completc pattern matching. Each
operating system has different interpretation of
network protocol. Especially, when operating
systems receive irregular network packets, they
handle the packets in different ways. Thus, it is
difficult for an intrusion detection system to handle
such traffic exactly in the same way without having
network protocol stacks of all types and versions of
operating systems.

Another problem on the current intrusion
detection approach are acquisition and management
of detection rule-set. Since new exploits are found
almost every day, rule-set must be updated frequently
to catch up with the new types of attack. In case of
commercial intrusion detection systems, this update
is done by reinstallation of entire programs with
distribution media such as CD-ROM:s.

3. System Design and Implementation

3.1 Overview of the system

In response to the problem on network-based
intrusion detection, an intrusion detection system
named “pakemon,” has been developed. The
system monitors Ethernet in promiscuous mode, and
detects predefined attack signatures on the wire with
reasonable computational resource consumption.
At the time of detection the system generates an alert
and/or logs the detail information of observed traffic.
The system is implemented and run on various Unix
variants.

The developed system is compliant to the
“insertion and evasion” technique against
network-based intrusion detection system. Features
of the system are as follows. First, it does full

241

TCP/IP protocol analysis in the same way as Linux
kernel 2.0.37 does. This interpretation is done by
utilizing a library named “libnids[16].” The library
was derived from TCP/IP protocol stack of Linux’s
kernel source code. Thus, packets received by this
intrusion detection system are processed like as a
Linux system does. This makes the system immune
to the “insertion and evasion” techniques against
Linux platform.

)

Network Input
~

Alert

logfile

connection reset

Defragmentation

Packet Ar:g}yﬂsi Analysis Engine

Network Monitor

liulei)ase
Figure 1. Overview of Pakemon

Another feature of the system is about its
development and operation model. The source code
of the program has been publicly available on the
Internet so that users are able to access its source
code. Users can write their own detection rule-sets,
can tune the rule-sets, and distribute their original
rule-sets to the entire community. As a result, many
attack signatures have been designed, provided and
shared by users. This process will solve the
problem of supply of network intrusion detection.
The system has been widely used in real operational
environment through the world and supported by
several security research groups so that the
community supplies rule-sets.

3.2 System Architecture

The system is constructed from four modules,
“network monitor,” “analysis engine,” “rule-base,”
and “response unit” The “network monitor”
captures network traffic and reassembles fragmented
IP and TCP traffic. The processed traffic data is
sent to “analysis engine.” The analysis engine
generates search trees from a rule-base at
initialization of the system. The engine examines if
observed traffic matches any nodes of the search
trees. When one or more signatures are matched, a
response unit processes a predefined action for the
signature. The responses include alerting, logging
to a file or to “syslog” service, and shutting down
correspond TCP connections.

”

3.3 Network Monitor

A key function of network monitor is to provide
network traffic data captured from connected wire for
the analysis engine. It captures packets on a
network; reassembles fragmented IP packets; and
reconstructs broken TCP streams. For the function

i

nids_killtcp() [| 7]

International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4, October 2001

of the component, two libraries “libpcap[17]” and
“libnids” are used in pakemon (Figure 2). These
libraries are system-independent and run on various
Unix variants.

“Libpcap” provides a system-independent
interface for user-level packet capturing. The
library can be used with “Berkeley Packet Filter”
commands that filter out unnecessary traffic into the
kernel. It can reduce traffic road to process.

-
application

pakemon

|
‘ | librids }

i ' libnet ! libpcap |

userspace |

| |

kernel

|
| link-layer
L

Figure 2. Runtime Structure

Libnids reassembles fragmented IP packets
and TCP segments in the same way as Linux 2.0.36
kernel does. This reassembly function of the library
makes the system immune to the “insertion and
evasion attack™ against intrusion detection systems.

By using these two libraries “pakemon”
receives all network traffic on a network in
promiscuous mode without interfering
communication under the monitor (Figure 3). Since
the monitor does not transmit any packets to the
interface attackers cannot aware the existence of the
monitor.

i payload pattern matching(case sensitive, case insensitive, regex)|

{F >
| N

| icmp_caliback() |

L LJ LJ
| tep_caliback() | | udp_callback() | | ip_callback()
L] T Lo 1T
‘ libnids ‘

<~ pcap_loop(...,
L pcap_handler, ...)

5 libnet , libpcap

Figure 3. Raw Packet Processing in Pakemon

3.4 Analysis Engine

Traffic data acquired through the network monitor is
sent to the analysis engine. The function of analysis
engine is to examine if observed packets match
predefined pattern of interest.

At the initialization time of the system,
analysis engine reads predefined attack rule-sets
stored in a rule-base. Then it organizes search trees
for detection rules in two-dimensional linked lists.
The tree structure is depicted in Figure 4. The tree
has two types of nodes, service node and content
node. Service nodes have information on service

242

types, port numbers in TCP and UDP and type of
service in ICMP protocol. The content node
includes binary data patterns to search. The service
nodes are lined horizontally and content nodes are
lined vertically in the figure. Every time the
analysis engine receives newly arrived traffic, it
searches for matched service node from correspond
tree for the protocol. Then the traffic data is
examined if it contains patterns stored in contents
nodes. For example, when a TCP segment to port
80 arrived, firstly it is merged with stored buffer
traffic. Then the data is examined with the TCP tree
of detection rule. Then the port number is
compared with the service nodes. When a service
node contains number 80 as a service port then
linked content nodes are examined. Each patterns
in contents node is examined if the traffic data
contains the pattern in it. The pattern match is done
by Boyer-Moore algorithm [18].

s_node

source / destination port numbers | c_node
|
(T Ll Rl | f ey
| TCP |+ o2t [o3 080 F»‘ 0139 ‘ i
| (ST — Sl | payload
v v l ‘) | t
worm ‘ decode | | pof | o1a7ocooj ’pa 2l
T R M i
nulljod] | | decode } [code.php3i
| UDP 021 —u 0111 H 0137 F-»‘ 039 W‘
v v v v
f]
ICMP 00 —» 25 r~>

Figure 4. Search Tree in Analysis Engine

3.5 Rule-base

Rule-base is implemented as a single file that
contains rules to detect attacks in the current version
of pakemon. A rule is a description of patterns
contained in network traffic. The format of rule is
shown in Figure 5. and example of a rule-set is
presented in Figure 6.

Rule format

name protocol src dest pattern \

name : name of the signature
protocol : protocol name (tcp, ip, icmp)

| src, dest: source/destination port numbers for TCP or UDP,
type/code for ICMP
| pattern : data pattern to detect

case sensitive

Py

case insensitive |
|...| binary expression ‘
<...> regular expression

Figure 5. Rule-set Format

International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4, October 2001

*21°5057440A 2F 69"
Croot 09050909090909 Mprog P=/bin’

prto3a207c sed'1,"S/d ¢’

[FTP-exploitl =
| SMTP-exploitl

SMTP-exploir2
| SMTP-exploit3
| SMTP-exploita
SMTP-exploit6
SMTP-exploit7(CVE-1999-0204)
SMTP-exploit! I(CVE-1999-0204)

3a20227c’

0d0a Mprog, P=/bin"

25'0aC 3adsemon 0a R’

25°0aD"
“CDSOESD7FFFFFF"

~01 000001 00000000 0000"

DNS-named-exploit

DNS-zone-transfer
‘ IIS-admunistrator pwd tep * 80 7/_vt_pvvadministrators pwd'
| IS-ISM.DLL-Exploit
CGI-phf(C VE-1999-0067)
HTTP-ApacheDOS
| HTTP-PiranhaPasswd php3

’ RPC-portmap-request-rusers

IMAP-exploit]
IMAP-exploi2
BD-BackOrifice

Figure 6. Example of a Rule-set

A rule-base contains arbitrary number of attack
signatures. The signatures are read when the
system is initialized. Then the system organizes a
detection rule tree for each layer 3 protocol (TCP,
UDP, ICMP). Payload patterns can be defined both
in text form, and in binary form. Matching
categories for each payload can be chosen from text
case sensitive match, text case insensitive match and
regular expression match.

3.6 Response-Unit

Response-unit has four functionalities. The unit can
issue an alert, log record to a file, send a signal to
syslog, and reset corresponding TCP connections.
These functionalities are activated by command
options. When a signature is detected an alert is
issued and the record is stored in the log. An
example of out put log is shown in Figure 7.

Alert Log Example

‘ TCP 194168 10121032->192 168 10 5(80) Thu Jan 11 1540 S
| COlhandlerCVE-1999.01 28)

GET leg-bivnan
e HTTPI1O A
ccost magergt
imagef.xtatma
P, Image/peg
magesipeg, T
User-Agert Vol
GEYE CGi secunt

| TCP19416810121033->192 168 10 580) Th Jan 11 1920 53 200

| COltestegs

| 7O 19416810 12103415192 168 10 580) Tha Jan 11 1540 55 200
| COlL-nph-test <gU CVE-1999-0045)

|

| TP 194168101210351152 168 10 %80) Thu Jn 11
| COLphitCVE-1999.0067)

94057 200

ragma no-cacne

Tha Jun 112259202001

| Sean from 194 1681012 scantype: SYX
iSeay L ! YRSy W Jan 11 19 40 53 2001

Frilan 12072515 2001

GET fegrbinnes

| invalid TCP header,from 194 168 101210192 16810 5 teg HTTRI O

-]

|
| Accert mages
1 imagokcxtin
2 maga/peg

imageroipeg,

User-Agent vo

| FnJan 12090200 2001

| Toomuch data i TCP receive queue,from 194 1681012 80
| 192168105 3983

secun

ty scanner Hest
192168108
Pragma no-cache

Figure 7. Output Log Example

243

4 Evaluation

4.1 Evaluation Methodology

To evaluate performance of the system, experiments
were conducted both in simulated environment and
in real-world environment. Evaluation of intrusion
detection system is not straightforward since the
expected behavior of intrusion detection system
varies from environment to environment. The
evaluation methodology of intrusion detection
system itself can be a research subject. Even
though research projects for such evaluation has
conducted, no common criteria to evaluate intrusion
detection system has not been established yet
[19]-[21].

In this evaluation, we limited the goal of
network-based intrusion detection system only to
identify pre-defined event. This means that, a
network intrusion detection system is expected to
have ability to detect all known attacks. To
examine our system an experiment was conducted in
following steps.

A benchmark performance test for
rule-based network intrusion detection systems has
been conducted. A tool “nidsbench” [22] were used
in the experiment. The purpose of this benchmark
is to present load performance and compliance to
various evasion techniques. In this experiment, the
system was compared to another popular intrusion
detection system named “snort.” “Snort” is
currently a leading open source intrusion detection
system available on the Internet [23].

The topology of the experimental network
is constructed as shown in Figure 8. The network is
isolated from outside. To show the compliance of
the system against to evasion techniques an
experiment, in which a simulated attacker send
crafted HTTP requests to a HTTP server, was
conducted. In this experiment, a special router
“Fragrouter” was used to split, disorder, and
de-synchronize the traffic. As the attack-side, a
vulnerability scanner that looks for vulnerable
services on a HTTP server was used. In this
experiment, 119 well-known vulnerabilities on a
HTTP server were scanned with 5 evasion techniques.
Other evasion techniques are to change normal HTTP
request for attacks into encoded ASCII code that
destination HTTP server might be able to decode but
some intrusion detection system cannot.

The HTTP server was under the monitor of
the intrusion detection system and the number of
detections was counted. Both intrusion detection
systems were run on Pentium III processor with
512MB memory with Free-BSD Operating Systems.
Since the rule-set to detect the scan was given to the
systems in advance, all attempts in the scan must be
detected.

International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4, October 2001

| fragment router }

{Vulnerabihty Scanner|

(Attacker)

| router 1
Traffic Generator ‘—1
G i
— pakemon |

\
{———{ snort

HTTP server
(Target)

Figure 8. Simulated Network

Then, to investigate the load performance
of the system, a program named “tcpreplay,” a
program that can replay recorded traffic with
arbitrary transfer speeds, was used to generate load
traffic. Clear traffic of HTTP (Hyper Text Transfer
Protocol) was artificially generated with an
automated download tool to dump files to replay.
Vulnerability scan, that simulate intrusions, was
performed against the HTTP server with the
simulated load traffic.

Finally, we have placed a system at a
perimeter of an operating sub-network in a campus
network in which there is a web site containing our
research materials and 3 client users exist in average.
This experiment was conducted to examine the
stability of the system.

4.2 Result

Figure 9. is the result of the experiment to test
compliance to evasion techniques. In the result,
pakemon present the ability to handle various
traffic-based evasion techniques such as
fragmentation, disordering and de-synchronization.
In contrast “snort” failed to process these crafted
traffic. However, pakemon failed to detect attacks
with %encoded URLs (Uniformed Resource
Locators), the reason for this is that current version
of pakemon does not decode encoded URLs. (The
function will be implemented in the future version.)
Dot-insertion technique place “/./” description in the
URL request of HTTP header. This will nullify
simple pattern matching since it changes the form of
request. Both intrusion detection systems
occasionally detect these attacks only when the rest
of the part of request matched rules they had.

Figure 10 shows degradation of the
detection rate by load traffic. Since network
intrusion detection have the heavy processing load to
analyze packets they received the load traffic should
not be majored by transfer rate presented in bits per
second (bps) but should be majored by frames per
second (fps). Pakemon reconstruct IP packets and
TCP segments. Thus, it should cause heavy
calculation load. On the other hand snort does not
do the reconstruction. Then calculation load must

244

be lower than pakemon. The result shows that
pakemon performs packet reassembly with
reasonable degradation of detection performance.

= snort1.6 @ snort1.7 @ pakemon

Figure 9. Detection Rate by Evasion Type

Detection Rate (%)

0 20000 40000 60000 80000 100000
Load Traffic : frame size 68 byte (frame/sec)

——pakemon - - -snort1.6 ~ - snort1.7

Figure 10. Detection Rate by Load Traffic

In figure 11, computational resource utilization at the
monitoring for each detection systems are shown in
the form of percentage of processor time it used.

This also represents that pakemon does
de-fragmentation =~ with reasonable resource

consumption.

10000 20000 30000 40000 50000 60000 70000 80000 0000 100000
Load Traffic : frame s.ze 68 byte (frame/sec)

= e Al

Figure 11. CPU Utilization by Load Traffic

In the real-world environment, it was
confirmed that the system is able to operate
continuously for the duration of more than 19 days
without any trouble and degradation of performance.
In 19 days period, 386292.88 IP frames/day were

International Journal of Knowledge-Based Intelligent Engineering Systems, Vol. 5, No. 4, October 2001

received on average. The distribution of the TCP,
UDP and ICMP protocols was 38.72%(149557.25
frames/day), 29.16%(112642.51 frames/day) and
0.08%(319.25 frames/day) respectively. This result
is given in Table below.

Protocol Frames per day %
IPs 11395640 386292.88 100.00
TCP 4411939 149557.25 38.72
uppP 3322954 112642.51 29.16
ICMP 9418 319.25 0.08

OTHER 3651329 123773.86 32.04

Jan 16 2001 10:41- Feb 4 2001 23:39 (19.5 days)
Table. Number of Packets processed in Real-world
Environment

5. Conclusion

In this paper, design and implementation of a
rule-based intrusion detection system is described.
This paper introduces an approach to improve current
intrusion detection systems. And quantitative
evaluation was presented to show the effectiveness of
the approach. This would be useful for researchers
to understand issues and limitation on the technology
and can be used as a case study of an implementation
of such systems. The system, “pakemon”
introduced in this paper is publicly available at
"http://www.sfc.keio.ac.jp/~keiji/ids/pakemon/" .

References

[1] D. Russell and GT. Gangemi Sr. Computer
security basics. OReilly & Associates, Inc.,
Sebastopol, CA., December 1991.

[2] S. Garfinkel and G. Spafford. Practical Unix
and Internet Security. 2nd Edition. O'Reilly and
Associates, Inc., Sebastopol, CA. 1996.

[3] P. Neumann and D. Parker. A summary of
computer misuse techniques. Proceedings of
National Computer Security Conference, pp.396-407,
1989.

[4] S. M. Bellovin. Security problems in the
TCP/IP protocol suite. Computer Communication
Review, Vol.19, No.2, pp.32-48, April, 1989.

[5] R. Power. 1999 CSI/FBI Computer crime and
security survey. Computer Security Journal, Vol.15,
No. 2, Computer Security Institute, San Francisco,
CA. 1999.

[6] J. P. Anderson. Computer security threat
monitoring and surveillance. Technical report,
James P Anderson Company, Fort Washington, PA.
April 1980.

[7] D. E. Denning, An intrusion detection model.
IEEE Transactions on Software Engineering,
Vol.SE-13, No.2, pp.222-232, IEEE Computer
Society Press. Los Alamos, CA., February, 1987.
[8] D. E. Demning and P. G Neumann.
Requirements and Model for IDES - A Real-Time
Intrusion Detection System. Technical report,
Computer Science Laboratory, SRI International,
August 1985.

[9] S. E. Smaha. Haystack :an intrusion detection
system. Proceedings of Fourth Aerospace Computer

245

Security Applications Conference, pp.37-44, 1988.
[10] H. S. Javitz, A. Valdes. The SRI IDES
Statistical Anomaly Detector. Proceedings of the
IEEE Symposium on Security and Privacy. 1991.
[11] L. T. Heberlein, G. V. Dias, K. N. Levitt, B.
Mukherjee, J. Wood and D. Wolber. A network
security monitor. Proceedings of the IEEE
Symposium on Security and Privacy, IEEE Press,
1990.

[12] B. Mukherjee, L. T. Heberlein, K. N. Levitt.
Network intrusion detection. IEEE Network, Vol.8,
No.3, pp.26-41, 1994.

[13] S. Kumar and E. H. Spafford. A pattern
matching model for misuse intrusion detection.
Proceedings on Large-Scale Digital Calculating
Machinery, pp. 141-146. Harvard University Press,
Cambridge, MA., 1994.

[14] S. P. Shieh and V. D. Gligor. On a
pattern-oriented model for intrusion detection.
IEEE Transactions on Knowledge and Data
Engineering, Vol.9, No.4, pp.661-667, IEEE.
July/August 1997.

[15] T. Ptacek and T. Newsham. Insertion, Evasion,
an Denial of Service: Eluding Network Intrusion
Detection. Technical reports, Secure Networks,
Inc., January 1998.

[16] R. Wojtczuk. Libnids.
http://www.packetfactory.net/Projects/Libnids/

[17] libpcap

http://www.tcpdump.org/

[18] R. S. Boyer and J. S. Moore. A fast string
searching algorithm. Communication of the ACM,
Vol1.20, No.10, pp.762-772. 1997.

[19] J. Puketza, K. Zhang, M. Chung, B. Mukherjee,
R. A. Olsson. A methodology for testing intrusion
detection systems. IEEE Transactions on Software
Engineering, Vol.22, No.10, pp.719-729, IEEE
Computer Society Press, Los Alamos. 1996.

[20] R. Durst, T. Champion, B. Witten, E. Miller, L.
Spagnuolo, Testing and evaluating computer
intrusion detection systems, Communication of the
ACM Vol.42, No.7, pp.53-61, ACM. 1999.
[21]J. McHugh. The 1998 Lincoln Laboratory IDS
Evaluation A Critique. Proceedings of Third
International Workshop Recent Advances in Intrusion
Detection. H. Debar, L. Me, And F. Wu (Eds.):
RAID 2000, LNCS 1907, pp.145-161,
Springer-Verlag, Berlin Heibelberg. 2000.

[22] Anzen Computing. nidsbench a network
intrusion detection system test suite. 1999,
http://www.anzen.com/research/nidsbench/

[23] M. Roesch, et.al. snort - The Lightweight
Network Intrusion Detection System. 2001.
http://www.snort.org/

