
Effectiveness of ensemble machine learning over the conventional multivariable linear 

regression models 

 

Yoshiyasu Takefuji 

Faculty of Environment and information studies 

Keio University 

5322 Endo, Fujisawa, 2520882 JAPAN 

takefuji@sfc.keio.ac.jp 

Koichiro Shoji 

Science Park, Corp 

3-1649-2, Iriya Zama-shi, 252-0024 Japan 

shoji@sciencepark.co.jp

 

 
Abstract—This paper demonstrates the effectiveness of 

ensemble machine learning algorithms over the conventional 

multivariable linear regression models including Ordinary Least 

Squares, Robust Linear Model, and Lasso Model.  The ensemble 

machine learning algorithms include Adaboost, Random-Forest, 

Bagging, Extremely Randomized Trees, Gradient Boosting, and 

Extra Trees Regressor.  With the progress of open sources, a 

variety of algorithms are available and they can be easily 

compared by using open source Python libraries from the 

viewpoint of prediction accuracies using R-squared.   

Keywords—big data, ensemble machine learning, OLS, RLM, 

Lasso 

I. INTRODUCTION 

A variety of algorithms have been proposed for predicting 
the correlations between input and output.  The conventional 
multivariable linear regression models have been used for 
predicting output, for example, sales, with several parameters 
(input) where the examined models include an Ordinary Least 
Squares (OLS), a Robust Linear Model (RLM), and a Lasso 
model from open sources (statsmodels) [1].  With the rapid 
progress of open source machine learning (sklearn:scikit-learn) 
[2],  ensemble machine learning algorithms including 
Adaboost, Random-Forest, Bagging, Extremely Randomized 
Trees,  Gradient Boosting, and Extra Trees Regressor can be 
applied to the input/output correlation problems.  

This paper demonstrates the effectiveness of ensemble 
machine learning algorithms by comparing the conventional 
multivariable linear regression models using R-squared.  In 
order to evaluate the quality of the algorithms, R-squared is 
used in this paper to measure goodness-of-fit in regression. 

A given problem in this paper is to predict the ice-cream 
sales by the temperature and the number of pedestrians in the 
street.  The more number of pedestrians, the ice-cream sales 
increase.  The temperature is one of important factors for ice-
cream sales.  Based on the latest research [3],  the ice-cream is 
the most seasonable food for summer and there is a strong 
correlation between the ice-cream sales and the temperature.   
At 18 degrees Celsius, sales soar. 

Without such pre-knowledge about the ice-cream sales, the 
ensemble machine learning models outperform the existing 
multivariable linear regression models.  The data of the ice-
cream sales, the number of pedestrians, the temperature are 
downloadable from: 

http://xica-inc.com/adelie/sample/data/ice.zip 

or 

http://web.sfc.keio.ac.jp/~takefuji/ice.csv 

II. MULTIVARIABLE LINEAR REGRESSION MODELS 

A. Ordinary Least Squares(OLS) 

Ordinary Least Squares (OLS) model is a classical 
multivariable linear regression model.  OLS is a statistical 
method which attempts to find the function which most closely 
approximates the data, so called a best fit.  The Least Squares 
method is used to fit a straight line through a set of data-points, 
so that the sum of the squared vertical distances from the actual 
data-points is minimized.  Open source Python library, 
"statsmodels"  is used in this paper. 

Downloaded ice.csv data is composed of the ice sales 
data['ice'], data['temp'] for temperature, and data['street'] for the 
number of pedestrians.  The following important source codes 
(imported library name, x:input, y:output, p:predicted output) 
describe the OLS regression Python program where "tem" 
variable and "st" variable indicate the coefficient of the 
temperature and that of the number of pedestrians respectively.  
The pandas library is used for data manipulations. 

 

import statsmodels.api, pandas 

data=pandas.read_csv('ice.csv')  

x=data[['temp','street']] 

x= statsmodels.api.add_constant(x) 

y=data['ice'] 

est=statsmodels.api.OLS(y,x).fit() 

const,tem,st=est.params 

p= tem*data['temp']+st*data['street']+const 

 

Fig.1 shows the result of real ice sales (y: dotted line) and 
OLS predicted sales (p: solid line).  The vertical axis indicates 
the ice-cream sales (Japanese Yen) while the horizontal axis 
means experimented 31 days for summer.  Computed R-
squared is 0.45 which shows no-good-fitting.  R-squared 



indicates a measure of goodness-of-fit in regressions within a 
range of 0 to 1 where the higher, the better. 

 

 

Fig.1 Ice sales (dotted line) and OLS predicted (solid line): 

vertical axis (sales), horizontal axis (30 days) 

 

B. RLM and Lasso model 

In order to implement the RLM algorithm using 
statsmodels library, the followings are important source codes 
(imported library name, clf:classfier, p:predicted output) of the 
Python program: 

import statsmodels.api as sm 

import pandas  

est= sm.RLM(y,x,M=sm.robust.norms.HuberT()).fit() 

const,tem,st=est.params 

p= tem*data['temp']+st*data['street']+const 

 

In Lasso model from sklearn library, the followings are 
important codes of the Python program: 

from sklearn import linear_model 

clf=linear_model.Lasso() 

clf.fit(x,y) 

p=clf.predict(x) 

 

The similar results as shown in Fig. 1 were obtained by 
RLM and Lasso algorithms respectively where R-squared is 
0.45. 

 

37 linear_model methods in the sklearn library are 
available and  10 methods were examined as shown in Table-1. 

The maximum R-squared is 0.45 in examined linear_model 
methods. 

 

Table-1 Experimented linear_model methods in sklearn 

Linear_model methods R-squared 

linear_model.ARDRegression  0.437 

linear_model.BayesianRidge 0.421 

linear_model.ElasticNet 0.45 

llinear_model.Lars 0.45 

linear_model.Lasso 0.45 

linear_model.LassoLars 0.45 

linear_model.LinearRegression 0.45 

linear_model.LogisticRegression 0.323 

linear_model.OrthogonalMatchin
gPursuit 

0.421 

linear_model.Ridge 0.45 

 

III. ENSEMBLE MACHINE LEARNING 

11 ensemble machine learning algorithms have been 
proposed and implemented in open sources including sklearn 
library (scikit-learn) as shown in Table-2. 

 

Table-2 Ensemble Methods in sklearn 

Ensemble methods details 

ensemble.AdaBoostClassifier An AdaBoost classifier 

ensemble.AdaBoostRegressor An AdaBoost regressor 

ensemble.BaggingClassifier A Bagging classifier 

ensemble.BaggingRegressor A Bagging regressor 

ensemble.ExtraTreesClassifier An extra-trees classifier 

ensemble.ExtraTreesRegressor An extra-trees regressor 

ensemble.GradientBoostingClassifier Gradient Boosting for 
classification 

ensemble.GradientBoostingRegressor Gradient Boosting for 
regression 

ensemble.RandomForestClassifier A random forest 
classifier 

ensemble.RandomTreesEmbedding An ensemble of totally 
random trees 

ensemble.RandomForestRegressor A random forest 
regressor 

 



Adaboost with DecisionTree, Random-Forest, Extremely 
Randomized Trees, Bagging, Gradient Boosting, and Extra-
Trees-Regressor were investigated in this paper [4]. 

Each ensemble machine learning method uses multiple 
learning algorithms to obtain better predictive performance 
than could be obtained from any of the constituent learning 
algorithms.    

In this Section, important codes [imported library name, 
clf:classifier, p:predicted output, clf.score(x,y): R-squared] of 
each ensemble machine learning are only shown by the 
followings: 

Adaboost with DecisionTree : 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.ensemble import AdaBoostRegressor 

clf1=DecisionTreeRegressor(max_depth=4) 

clf2=AdaBoostRegressor(DecisionTreeRegressor(max_dep
th=4),n_estimators=300,random_state=rng) 

clf1.fit(x,y) 

clf2.fit(x,y) 

p1=clf1.predict(x) 

p2=clf2.predict(x) 

print clf1.score(x,y) 

print clf2.score(x,y) 

 

 Random Forest: 

from sklearn.ensemble import RandomForestRegressor 

clf=RandomForestRegressor(n_estimators=200, 
min_samples_split=1) 

clf.fit(x,y) 

p=clf.predict(x) 

print clf.score(x,y) 

 

Extremely Randomized Tree: 

from sklearn.ensemble import ExtraTreesClassifier 

clf = ExtraTreesClassifier(n_estimators=100, 
max_depth=None,min_samples_split=1, random_state=0) 

clf.fit(x,y) 

p=clf.predict(x) 

print clf.score(x,y) 

 

Bagging with KNeighbors: 

from sklearn.ensemble import BaggingClassifier 

from sklearn.neighbors import KNeighborsClassifier 

clf=BaggingClassifier(KNeighborsClassifier(), 
n_estimators=1000,max_samples=0.8, max_features=0.5) 

clf.fit(x,y) 

p=clf.predict(x) 

print clf.score(x,y) 

 

Gradient Boosting codes: 

from sklearn.ensemble import GradientBoostingRegressor 

clf=GradientBoostingRegressor(n_estimators=1000, 
learning_rate=1.2,max_depth=1, random_state=0) 

clf.fit(x,y) 

p=clf.predict(x) 

print clf.score(x,y) 

 

Extra-Trees-Regressor codes: 

from sklearn.tree import ExtraTreeRegressor 

clf=ExtraTreeRegressor() 

clf.fit(x,y) 

p=clf.predict(x) 

print clf.score(x,y) 

 

Fig. 2 shows the result of Gradient boosting over the real 
sales data where both lines are almost fitted with R-
squared=0.985. 

 

 

Fig. 2 Ice sales (dotted line), Gradient Boosting (solid line) 

vertical axis (sales), horizontal axis (30 days) 

 

 



Computed R-squared data of DecisionTree, Adaboost with 
DecisionTree, RandomForestRegressor, Bagging with 
KNeighborsClassifier, Extremely Randomized Tree, Gradient 
Boosting, and ExtraTreeRegressor are described respectively 
as shown in Table-3.   

All ensemble machine learning algorithms can significantly 
improve the R-squared data over the conventional linear 
regression algorithms with R-squared=0.45.  Table-3 shows 
that Gradient Boosting and ExtraTreeRegressor are the best 
algorithms among all algorithms with R-squared=0.985. 

 

Table-3 R-squared of  examined algorithms 

Algorithms R-squared 

OLS, RLM, Lasso 0.45 

DecisionTree 0.766 

Adaboost with DecisionTree 0.959 

RandomForestRegressor 0.864 

RandomForestClassifier 0.968 

Bagging with KNeighbors 0.935 

ExtremelyRandomizedTree 0.968 

GradientBoosting 0.985 

ExtraTreeRegressor 0.985 

 

A. Implemented Python program  

 
The Python full program for Adaboost with DecisionTree is 

described in Fig. 4. 

 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.ensemble import AdaBoostRegressor 

import matplotlib.pyplot as plt 

data=pd.read_csv('ice.csv') 

x=data[['temp','street']] 

y=data['ice'] 

rng=np.random.RandomState(1) 

clf1=DecisionTreeRegressor(max_depth=4) 

clf2=AdaBoostRegressor(DecisionTreeRegressor(max_dep
th=4),n_estimators=300,random_state=rng) 

clf1.fit(x,y) 

clf2.fit(x,y) 

p1=clf1.predict(x) 

p2=clf2.predict(x) 

print clf1.score(x,y) 

print clf2.score(x,y) 

t=np.arange(0.0,31.0) 

plt.plot(t,data['ice'],'--b') 

plt.plot(t,p1,':b') 

plt.plot(t,p2,'-b') 

plt.legend(('real','dtree','adaB')) 

plt.show() 

Fig. 4 adaboost.py 

 

B. How to install statsmodels and sklearn libraries on 

Windows and Linux 

This Section shows how to install statsmodels and 
sklearn Python libraries. 

After installing Python on your system, run the 
following commands in the super user mode: 

# easily_install statsmodels 

In order to install sklearn on Windows: 

# pip install -U scikit-learn 

or 

download *.whl from  

http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn 

# pip install xxx.whl 

 

On Linux: 

# apt-get install build-essential python-dev python-setuptools 

python-numpy python-scipy libatlas-dev libatlas3gf-base 

 

 

IV. FUTURE WORKS 

There are a variety number of combinations using ensemble 
machine learning.  We should further investigate what 
combinations will give us the best performance. 

 

V. CONCLUSIONS 

     We have investigated the performance of ensemble 

machine learning algorithms over the conventional linear 

regressions.  Ensemble machine learning algorithms including 

Gradient-Boosting and Extra-Tree-Regressor have generated 



the best performance with R-squared=0.985 while the 

conventional linear regression algorithms have R-

squared=0.45.   

     The ensemble machine learning can significantly improve 

R-squared, goodness-of-fit in regressions over the existing 

linear regression algorithms. 

 

REFERENCES. 

[1] http://statsmodels.sourceforge.net/ 

[2] http://scikit-learn.org/stable/ 

[3] http://www.unilever.co.uk/media-centre/pressreleases/2014/Perfect-
temperature-for-ice-cream-sales-spike-revealed-and-its-lower-than-
youd-think.aspx 

[4] Yoshiyasu Takefuji, Introduction to IoT design and implementations 
using Open Sources (Ohmsha 2015). 

 


