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Abstract
In Japan, the number of skilled shaft excavator engineers is decreasing. To complete the Linear Central Shinkansen line 
of 286 km between Tokyo and Nagoya, an AI-equipped shaft excavator was prototyped to absorb the tacit knowledge of 
highly skilled engineers. The AI can predict penetration resistance and optimally controlling the excavator. This not only 
reduces drilling time, enhancing sustainability, but also cuts CO2 emissions by half. Datasets are built based on standard 
penetration tests and an ensemble–ensemble method with 16 determinants is used, achieving a prediction accuracy of 0.9. 
This paper presents a case study that AI capabilities are there to fill the gap, extend the skills or meet the shortage in the 
labor market. Trust of AI in fairness is addressed by calculating fairness as a benchmark with a variety of fairness metrics 
from all disciplines. From an information management perspective, this paper explores methods for managing the tacit 
knowledge of highly skilled, diminishing workers in civil engineering to enhance the sustainability of services and products. 
Tacit knowledge can drive innovation to boost sustainability.

Keywords  AI shaft excavator · Standard penetration test (SPT) · Harsh shaft drilling environment

Abbreviations
lightgbm	� Light gradient boosted machine
xgboost	� Extreme gradient boosting
mlxtend	� Machine learning extensions

1  Introduction

The construction sector is a major contributor to global CO2 
emissions, accounting for 23% of the total. Highly skilled 
engineers with heavy construction machines such as exca-
vators can play a significant role in reducing these CO2 
emissions. In this paper, a highly skilled engineer is defined 
as one who possesses drilling skills at least at least twice 
as fast as those of an average engineer. One way to har-
ness the expertise of these engineers is to use AI-equipped 
shaft excavators. These machines can learn from the tacit 
knowledge of highly skilled engineers, which can then be 
used to improve efficiency and reduce CO2 emissions. AI-
equipped shaft excavators can be programmed to identify 

the most efficient drilling patterns for different types of 
soil. This can help to reduce the amount of time and energy 
required to drill, which in turn can lead to significant reduc-
tions in CO2 emissions. Autonomous AI shaft excavators 
can help construction engineers reduce dangerous working 
environments and promote green technology. The scope of 
this paper focuses on the transfer of tacit knowledge from 
highly skilled engineers to AI, and the enhancement of trust 
in AI through fairness. This paper demonstrates that tacit 
knowledge can drive innovation to boost sustainability by 
reducing 50% CO2 emission. Tacit knowledge from highly 
skilled engineers has been harnessed to generate the current 
datasets. It is essential that all datasets are scrutinized from 
the perspective of fairness metrics. Similarly, all AI projects 
should be evaluated using fairness metrics for potential com-
parison. This paper serves as a pioneering project, introduc-
ing the first application of fairness metrics in construction 
robotics.

According to NIST (National Institute of Standards and 
Technology) special publication (NIST 1996), the Japanese 
construction industry was found to be large, solid, and pro-
gressive, with state spending on infrastructure and construc-
tion in general accounting for twice the GDP of the United 
States. In a country prone to earthquakes, typhoons, and 
other natural disasters, Japan led the world in the modernity 
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and quality of its built facilities and in the size and quality 
of its physics laboratories as of 1996 (NIST 1996). However, 
the number of skilled engineers is rapidly decreasing due to 
difficulties in passing on skills (MLIT.GO.JP. 2024). Skills 
are not manualized in Japan. Skilled Japanese engineers tend 
not to explain detailed techniques to other engineers. There-
fore, generally, all types of shaft excavator engineers are in 
shortage in Japan (MLIT.GO.JP. 2024).

Knowledge comes in three forms: explicit, implicit, and 
tacit. Explicit knowledge can be shared, and when applied 
practically, it becomes implicit knowledge. Tacit knowledge, 
on the other hand, is gained from experience and is hard 
to share. This paper discusses a method to capture the 
tacit knowledge of highly skilled engineers in a dataset, 
effectively representing their expertise. We utilized fairness 
metrics to assess the fairness of our datasets.

This paper showcases a case study demonstrating how AI 
capabilities can bridge the gap, enhance skills, or address the 
scarcity in the labor market. While the article does discuss 
the potential of AI to perform tasks traditionally done by 
highly skilled engineers, it is important to clarify that the 
ultimate goal of AI is not to replace humans. Instead, AI 
can be used as a tool to augment human abilities, allowing 
us to work more efficiently and effectively. AI can handle 
repetitive tasks, analyze large amounts of data quickly, and 
even learn from its experiences. However, it lacks the ability 
to understand context, make ethical judgments, and bring a 
truly innovative and creative approach to problem-solving—
these are uniquely human traits. Therefore, the vision should 
not be about replacing engineers with AI, but about creating 
a collaborative environment where AI and human expertise 
complement each other. This approach not only leverages 
the strengths of both but also addresses ethical concerns. 
In this light, the focus should be on developing AI systems 
that are transparent, explainable, and designed with human 
oversight in mind. This way, we can ensure that AI is used 
ethically and responsibly, and that it serves to enhance our 
capabilities rather than replace them. In response to the 
dwindling number of skilled workers, CEOs of construction 
corporations initiated this proposed AI project to bolster 
their human workforces.

In order to complete the Linear Central Shinkansen line 
with insufficient manpower, it was necessary to accelerate 
the prototype of a shaft excavator or shaft boring machine 
equipped with artificial intelligence (AI). The Chuo 
Shinkansen or Central Shinkansen is a Japanese maglev line 
under construction between Tokyo and Nagoya, running at 
a maximum speed of 505 km/h. About 90% of the 286 km 
between Tokyo and Nagoya will be tunnels while 10% 
will be above ground. The project requires more than 50 
vertical shafts, each 40 m in diameter and 100 m deep to 
gain access to the tunnel horizon, provide ventilation and 
emergency access to the completed tunnels. No one knows 

the underground conditions. However, the AI shaft excavator 
can handle gravel, bedrock, sand and clay soils.

The autonomous prototype AI shaft excavator we 
developed is actually in use at construction sites such as the 
Central Shinkansen Line and others in Japan. The AI shaft 
excavator prototype is a fully automated machine with skills 
learned from the highly skilled operators. The skill of the 
engineer is to accurately predict penetration resistance and to 
optimally control the shaft excavator based on its penetration 
resistance. Because of the harsh shaft drilling environment, 
the conventional IoT (Internet of Things) sensors cannot be 
used. Shaft drilling bits are hot, high pressure, and humid so 
that the conventional IoT sensors cannot be used to measure 
the penetration resistance.

This paper presents a case study of human management 
in which highly skilled engineers possessing unshared 
tacit knowledge are captured by the proposed method. 
This method can significantly improve sustainability by 
reducing drilling times by a half. In other words, the skills 
of highly engineers, which are difficult to pass on, will be 
successfully absorbed by the multi-sensory datasets using 
the proposed method. A precise prediction of soil resistance 
can contribute to a reduction in both drilling time and CO2 
emissions. In additions, this paper addresses the trust of AI 
by calculating fairness as a benchmark, which will contribute 
to sustainability in green infrastructure and technology.

This paper details how the AI shaft excavator can predict 
penetration resistance to optimally control and thus reduce 
drilling time. The shorter the excavation time, the more 
sustainable the construction. This paper focuses on shaft 
excavators or shaft drilling machines. A digitized shaft 
excavator already existed, but a new AI was added to the 
digitized shaft excavator.

A comprehensive literature review was conducted on AI 
shaft excavator. In 1997, Shimizu et al. proposed the world’s 
first unmanned deep foundation construction method in shaft 
which means covering from excavation to concrete placing 
(Shimizu, et al. 1997). Operators must remotely control the 
machines, not automated. However, it did not elaborate on 
how the operator’s skills in the shaft could be learned by 
machine learning with the dataset.

In 1998, Bradley et al. studied the development, control 
and operation of an autonomous robotic excavator (Bradley 
and Seward 1998). They developed artificial intelligence-
based control system utilizing motion control strategy 
for movement of the excavator bucket through ground. 
However, the developed excavator is not for deep foundation 
construction in shaft but solely for excavation.

Hara et  al. developed small-diameter vertical shafts 
constructed in the shallow space of steep mountainous areas 
(Hara et al. 2019). Four small-diameter vertical shafts of 2.5 
or 3.0 m as the foundation for high-voltage transmission line 
towers in mountainous areas are traditionally constructed 
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manually in Japan. The developed unmanned excavation of 
a vertical shaft can be achieved by the combination of three 
components: remote-controlled excavation, excavated soil 
conveyance, and assembling and inserting the retaining wall 
at the top of the vertical shaft. Therefore, the shaft excavator 
must be controlled by engineers.

Lee et al. developed unmanned excavator vehicle system 
for performing dangerous construction work (Lee et al. 
2019). However, the developed excavator needs human 
engineers to control it.

Zhiqiang et  al. studied key technologies of drilling 
process with raise boring method (Liu and Meng 
2015). They concluded that the mechanized method can 
significantly reduce the number of workers, increase the 
safety of shaft construction, reduce worker injuries, and 
improve operational efficiency compared to the conventional 
drill-and-blast method. The development and application 
of raise boring technology are promising. However, they 
have never applied their technologies to the real-world 
application.

Kim, K. et al. investigated and simulated modeling, and 
velocity-field control of autonomous excavator with main 
control valve (Kim et al. 2019). However, their technologies 
have not yet been applied in practice.

Liu W. et al. conducted a literature review on control 
systems and control strategies for excavators (Liu, et al. 
2022). Mayer presented drilling into the autonomous future 
of the industry (Mayer 2021). Oybek Maripjon UgliEraliev 
et al. conducted a literature review on sensing, perception, 
decision, planning and action of autonomous excavators 
(UgliEraliev et al. 2022).

HeshanFernando et  al. investigated autonomous 
excavators using proprioceptive force sensing and machine 
learning and achieved classification accuracy (90%) using 
basic signal features and simple classifiers (HeshanFernando, 
et al. 2020). However, they have not mentioned how to 
improve the speed of penetration in shaft drilling.

The goal of the proposed AI shaft excavator is to learn 
the unshared tacit skill from highly skilled engineers with 
datasets and to reduce the drilling time with optimal control. 
Veteran operators in Japan can drill at least twice as fast as 
non-veteran operators. The proposed excavators can reduce 
CO2 emissions from construction sites by up to 50%. The 
digging performance of highly skilled workers surpasses 
that of average workers by more than double. Consequently, 
the proposed excavators have the potential to reduce CO2 
emissions at construction sites by up to 50%.

To the best of our knowledge, there are no papers on 
unshared tacit knowledge management of highly skilled 
engineers. In other words, the dataset created can represent 
the unshared and unexplained tacit knowledge of highly 
skilled engineers.

Drilling efficiency is largely determined by the engi-
neer’s experience, but the underlying operational mech-
anisms are often overlooked (Shen, et  al. 2022). The 
national renewable energy laboratory (NREL) is working 
with geothermal operators to introduce lean manufacturing 
principles to the geothermal drilling industry (Gov and 
Efficiency xxxx). Time and experience have shown that 
this can lead to significant savings. The practical expe-
rience gained from existing research has shown that the 
oil and gas construction industry can improve its sustain-
ability by incorporating innovative strategies (Waqar et al. 
2023).

The total CO2 emission of the construction sector was 
5.7 billion tons which made up 23% of the emissions of 
global economic activity in 2009 (Sizirici et al. 2021). This 
indicates the contribution of this paper is significant.

Fairness has been raised in machine learning issues in 
a variety of areas (Chen et al. 2023; Drukker et al. 2023; 
Kaminwar et  al. 2023). Computing fairness metrics in 
machine learning is beneficial for several reasons. It aids 
in the identification and reduction of biases in model 
predictions, which can arise from imbalanced datasets 
or biased feature selection. This ensures that models can 
generalize better to diverse populations, leading to more 
accurate and reliable predictions across different groups. 
Fairness in machine learning is also crucial for ethical 
decision-making, particularly in sensitive domains such 
as healthcare, finance, and criminal justice where biased 
decisions can have significant real-world consequences. In 
many jurisdictions, laws and regulations require algorithmic 
decisions to be fair, and computing fairness metrics can help 
demonstrate compliance with these regulations. Lastly, fair 
models can enhance trust among end-users. When users 
understand that a model makes decisions fairly, they are 
more likely to accept and use the technology. However, it is 
important to remember that while fairness metrics can guide 
us towards more equitable models, they are just one piece of 
the puzzle. The context in which the model is used, as well 
as continual monitoring and adjustment of the model, are 
also necessary. In general, it is crucial to evaluate datasets 
utilized for machine learning from a fairness standpoint. Our 
investigation reveals a lack of research on fairness metrics 
computing within the realm of construction robotics. This 
paper aims to bridge that gap by showcasing the application 
of fairness computing in this field.

A literature review was conducted on fairness on datasets 
and algorithms. Chen et al. addressed current AI systems in 
healthcare can be unfair and lead to disparities in care (Chen 
et al. 2023). Their perspective discussed algorithmic biases 
that arise in data acquisition, genetic variation, and intra-
observer labeling variability, and emerging technologies 
for mitigating biases such as disentanglement, federated 
learning, and model explainability (Chen et al. 2023).
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Drukker et  al. found that medical imaging AI can 
introduce bias at multiple steps in the development and 
deployment process (Drukker et  al. 2023). A multi-
institutional team identified 29 sources of potential bias and 
developed recommendations for best practices to mitigate 
bias (Drukker et al. 2023). Kaminwar et al. argued that 
the democratization of AI requires the democratization of 
the verification process of ML systems, in order to ensure 
fairness and mitigate bias (Kaminwar et al. 2023).

Nazer et al. found that the adoption of AI algorithms in 
healthcare is rapidly increasing, but there is a risk of bias 
and disparities in the development and implementation 
of these algorithms (Nazer et al. 2023). It is important to 
understand the sources of bias and to develop strategies 
to mitigate them, in order to ensure fairness in healthcare 
(Nazer et al. 2023).

Kim et al. developed a deep learning model to predict 
financial losses due to accidents at apartment construction 
sites (Kim et al. 2022). The model was trained on insurance 
claim payout data and can be used to prevent and reduce the 
risk of financial loss. However, the study also found that 
the AI model can be unfair, as it can unilaterally provide 
results of predictions without explaining the basis and 
process for drawing the results. This could negatively affect 
the reliability and fairness of future models (Kim et al. 
2022). The findings of the review highlight the absence of 
fairness computing in construction robotics, underscoring 
the significance of this paper’s contribution in introducing 
fairness metrics.

The proposed method can be applied to general tacit 
knowledge management if datasets can be created with 
highly skilled experts or engineers. This paper suggests 
that by eliminating hazardous working environments for 
humans and reducing drilling time with AI, we can enhance 
sustainability and promote green technologies with trust of 
AI from a fairness perspective. Trust of AI with fairness can 
be improved by calculating and showing values of fairness 
metrics with datasets.

The proficiency of shaft excavator engineers can be 
gauged by the accuracy of their predictions regarding 
soil penetration resistance, as measured by the standard 
penetration test (SPT). Greater accuracy in these predictions 
leads to reduced drilling time. The proprietary dataset is 
composed of 24,377 instances and 16 determinants with 
N-value named as SPT which is a full list of variables. The 
standard penetration test (SPT) procedure is notably time 
intensive. It involves manually measuring ‘N’ values per 
300 mm, a process repeated 24,377 times for a total soil 
tube extraction of 400 m by boring machines. Details will 
be explained in Sect. 2.

Fairness metrics in machine learning offer numerous 
benefits. They help identify and reduce biases, ensuring 
models generalize better across diverse groups. This leads 

to more accurate predictions and ethical decision-making, 
particularly in sensitive areas such as healthcare and finance. 
Fair models can also enhance user trust and demonstrate 
regulatory compliance. Despite their importance, there 
is a noticeable gap in applying fairness metrics within 
construction robotics. This paper aims to address this 
by highlighting the significance of fairness in machine 
learning in construction robotics and the need for continual 
monitoring and adjustment of models and comparison in the 
future with other projects for researchers.

This paper makes three significant contributions: 
(1) it demonstrates the superior performance of the 
ensemble–ensemble regressor over the random forest 
regressor and extra trees regressor, (2) it discusses the 
creation of datasets by highly skilled engineers for the 
acquisition of tacit knowledge using N-values or soil 
penetration resistance for controlling shaft excavators, 
and (3) it introduces the application of fairness metrics in 
machine learning within the field of construction robotics to 
validate the fairness of created datasets.

1.1 � Shaft excavator machine learning

Supervised machine learning is based on a skilled 
engineered dataset: y = f(X), consisting of a target variable 
y or y penetration resistance and a set of input variables X.

The penetration resistance (N-value) of target y is 
given by y = f(X) = f(x1, x2,…, xn) where x1, x2, and xn are 
influence determinants and the function f() can be trained as 
the relationship function between the influence determinants 
of X and the target y.

The effectiveness of shaft excavator engineers is 
determined by their ability to accurately predict soil 
penetration resistance, as quantified by the standard 
penetration test (SPT). Enhanced prediction accuracy 
results in decreased drilling time. The proprietary dataset, 
comprising 24,377 instances and 16 determinants, 
includes an ‘N’ value referred to as SPT, which represents 
a comprehensive list of variables. The SPT procedure, 
which is notably time-consuming, involves the manual 
measurement of ‘N’ values. This process is repeated 24,377 
times, resulting in a total soil tube extraction of 400 m by 
boring machines with multiple times.

Despite the challenges posed by the lack of public access 
to the dataset for independent validation, this paper offers a 
detailed methodology to address this issue. It encompasses 
the algorithms, Python programs, parameters, and statistical 
methods utilized to capture SPT N-values. These values 
are essential for engineers to predict soil resistance, a 
critical factor in the control of shaft excavators. More 
precise predictions not only reduce drilling time but also 
decrease CO2 emissions. Essentially, this paper proposes a 
novel method for generating datasets that enable AI shaft 
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excavators to optimally predict soil resistance. Consequently, 
those with access to similar data can replicate the study, 
thereby validating its findings.

This paper examines and compares three ensemble 
methods: (1) random forest regressor, (2) extra trees 
regressor, and (3) stacking ensemble method. The stacking 
ensemble method is an ensemble–ensemble method which 
can ensemble multiple ensemble methods: lightgbm, 
xgboost, extra trees regressor, and random forest regressor.

Tenfold cross-validation is used for evaluating three 
methods for comparison. The proprietary dataset is 
composed of 24,377 instances and 16 multi-sensory 
input variables. Existing studies do not provide a 
comparison between random forest algorithms and 
ensemble–ensemble machine learning algorithms using real-
world datasets in construction robotics. The advantages of 
ensemble–ensemble algorithms over existing ones become 
evident in this context by showing the improvement in the 
prediction accuracy.

To the best of our knowledge, there are no papers in the 
construction machine field on ensemble–ensemble methods 
demonstrated. Therefore, a new contribution of this paper is 
to present an ensemble–ensemble method with source code 
disclosure and to validate and compare the results of con-
ventional ensemble methods with tenfold cross-validation. 
The effectiveness of the ensemble–ensemble method over 
the conventional ensemble methods is demonstrated. The 
AI shaft excavator proposed in this study is indeed utilized 
in a variety of fields and locations, distinguishing it from 
existing research that is largely based on simulations rather 
than real-world applications. In other words, the proposed 

paper will demonstrate the effectiveness of the computer 
application in industry and business.

1.2 � Fairness based on computational ethics

The trust of AI systems must be addressed in all existing AI 
systems, but in many original papers (NIST 1996; Shimizu, 
et al. 1997; Bradley and Seward 1998; Hara et al. 2019; 
Lee et  al. 2019; Liu and Meng 2015; Kim et  al. 2019; 
Liu, et  al. 2022; Mayer 2021; UgliEraliev et  al. 2022; 
HeshanFernando et al. 2020; Shen, et al. 2022; Gov and 
Efficiency xxxx; Waqar et al. 2023; Sizirici et al. 2021) 
in civil engineering, only the quality of accuracy with 
cross-validation is usually reported. This paper addresses 
fairness based on computational ethics by calculating 
fairness metrics such as disparate impact, average odds 
error, average odds difference, equal opportunity difference, 
between group generalized entropy error, conditional 
demographic disparity, Theil index, consistency score, KL 
divergence, statistical parity difference, and class imbalance, 
respectively. Scores of fairness metrics from all disciplines 
can show a variety of biases to ensure trust of AI. Fairness 
metrics on origin area and description are summarized in 
Table 1. The shaded rows indicate that fairness metrics can 
only be applied to classification tasks. The proposed method 
is used for solving regression problems.

The details of fairness metrics, including “disparate 
impact”, average odds error (AOE), conditional demo-
graphic disparity (CDD), and Theil index, are thoroughly 
discussed. According to Merriam-Webster legal, “disparate 
impact” is a legal theory that allows challenges to practices 

Table 1   Fairness metrics on original area and description

Fairness metric Original area Description

Disparate impact Law Measures the difference in the rates at which a protected group is denied a loan, 
job, or other outcome, compared to a non-protected group

Average odds error Statistics Measures the difference in the average odds of receiving a favorable outcome for 
two groups

Average odds difference Statistics Measures the difference in the average odds of receiving a favorable outcome for 
two groups, after adjusting for covariates

Equal opportunity difference Statistics Measures the difference in the false-positive rates for two groups
Between group generalized entropy error Economics Measures the difference in the expected value of the entropy of the predicted 

probabilities for two groups
Conditional demographic disparity Statistics Measures the difference in the distributions of predicted probabilities for two 

groups, conditional on a set of covariates
Theil index Economics Measures the overall inequality in a distribution
Consistency score Machine learning Measures the consistency of a model’s predictions with a set of fairness 

constraints
KL divergence Information theory Measures the distance between two probability distributions
Statistical parity difference Statistics Measures the difference in the proportions of two groups that receive a favorable 

outcome
Class imbalance Machine learning Measures the imbalance in the distribution of classes in a dataset
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or policies that appear to be nondiscriminatory but have a 
disproportionately adverse effect on members of a protected 
class, such as race, color, religion, sex, or disability. Dis-
parate impact can be used to identify unlawful discrimina-
tion in employment, housing, education, and other areas. To 
prove disparate impact, plaintiffs must show that the practice 
or policy has an unjustified negative impact on the protected 
group compared with non-members of the group.

Average odds error (AOE) is a measure of fairness in 
machine learning models. It is a relaxed version of equality 
of odds, which means that it does not require the model to 
have the same error rate for all protected groups. Instead, 
AOE measures the difference in error rates between the 
protected and unprivileged groups.

Conditional demographic disparity (CDD) is a measure of 
fairness in machine learning models. It is a relaxed version 
of demographic parity, which means that it does not require 
the model to have the same proportion of positive outcomes 
for all protected groups. Instead, CDD measures the 
difference in the proportion of positive outcomes between 
the protected and unprivileged groups, conditional on a set 
of covariates.

The Theil index is a measure of inequality that is used to 
quantify the distribution of income or wealth in a population. 
It is named after the Dutch economist Henri Theil, who 
developed it in the 1960s.

In machine learning, consistency score is a measure of 
how similar the labels are for similar instances. It is a metric 
of fairness that is used to assess whether a machine learning 
model is making consistent predictions across similar 
instances, regardless of their protected class.

Since there is no paper on fairness in civil engineering, 
we can only show the result as a benchmark.

2 � Methods

Eight datasets (each at every 50 m depth) were created with 
highly skilled engineers. Eight datasets were converted to a 
single dataset. Each dataset is with N-value and 16 multi-
sensory variables such as head lubrication pressure, air 
pressure, frame tilt angle X, hydraulic pump pressure P2, 
frame tilt angle Y, spindle speed, spindle torque, water rate 
flow, hydraulic pump pressure P1, oscillator pressure, engine 
speed, bit load, water pressure, engine water temperature, 
drilling speed, and battery voltage. The N-value represents 
penetration resistance which plays a key role in reducing 
the drilling time. The more accurate the prediction of 
penetration resistance, the shorter the drilling time. The 
N-value will be detailed.

The purpose of the standard penetration test (SPT) is to 
determine the relative density and consistency of the sub-
soils, and to obtain disturbed soil samples for field visual 

identification of soil samples. SPT is from 0 to 100 in the 
dataset.

The SPT procedure is described in ISO 22476-3. It 
produces an N-value, which represents the number of blows 
of a standardized sampler driven into the soil a standardized 
distance. The sampler is 51 mm O.D. (outside diameter) and 
it is driven into the soil with a 63.5 kg weight having a free 
fall of 760 mm. The first 150 mm of soil is neglected. The 
next 300 mm of soil constitutes the test. The number of blows 
for that 300 mm becomes the N-value. N-value represents 
standard penetration resistance. Therefore, creating a dataset is 
a time-consuming task. It took 3 months to create proprietary 
multi-sensory eight datasets with highly skilled engineers. 
The eight datasets were converted to a single dataset. The 
SPT procedure is the most time-consuming, with N-values 
measured manually 24,377 times out of a total of 400 m.

We have compared three ensemble methods: (1) random 
forest regressor, (2) extra trees regressor, and (3) mlxtend 
stacking regressor (ensemble–ensemble method) with four 
ensemble methods: lightgbm, xgboost, extra trees regressor, 
and random forest regressor.

A random forest is a meta-estimator that fits a number 
of classifying decision trees on various sub-samples of 
the dataset and uses averaging to improve the predictive 
accuracy and control over-fitting.

An extra trees is also a meta-estimator that fits a number 
of randomized decision trees. Random forest chooses the 
optimum split, while extra trees chooses it randomly.

Stacked generalization consists in stacking the output 
of individual estimator and use a regressor to compute the 
final prediction. Stacking allows to use the strength of each 
individual estimator using their output as input of a final 
estimator.

The mlxtend stacking allows us to use the 
ensemble–ensemble method. In other words, the mlxtend 
stacking allows us to ensemble three regressors including 
lightgbm, xgboost, extra trees with meta-regressor such 
as random forest regressor. There are four possible cases 
choosing a meta-regressor among four ensemble methods: 
lightgbm, xgboost, extra trees regressor, and random forest 
regressor. The random forest regressor performed best as a 
meta-regressor. APPENDIX shows the ensemble–ensemble 
method. In APPENDIX, ‘SPT’ represents the N-value of 
penetration resistance.

3 � Results

3.1 � Accuracy analysis with cross‑validation

The results of the tenfold cross-validation showed a 
significant difference in the prediction accuracy of the 
three methods such as random forest regression, extra trees 
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regression, and stacking regression (ensemble–ensemble) 
with four ensemble methods such as lightgbm, xgboost, 
extra trees with meta-regressor such as random forest 
regressor. Table  2 summarizes the average prediction 
accuracy results from the tenfold cross-validation of 
random forest regression, extra tree regression, and 
ensemble–ensemble regression. Values in Table 2 represent 
the average prediction accuracy of tenfold cross-validation. 
Table  2 presents two columns: ‘Method’ and ‘Cross-
Validation Average Prediction Accuracy’. It compares three 
methods: the random forest regressor, extra trees regressor, 
and ensemble–ensemble regressor. The ‘Cross-Validation 
Average Prediction Accuracy’ column includes an average 
value and ten additional values in brackets, which represent 
the results of a tenfold cross-validation. As indicated in 
Table 2, the ensemble–ensemble regressor consistently 
outperforms the random forest and extra trees regressors.

The proprietary dataset is composed of 24,377 instances 
and 16 determinants with N-value named as SPT. It took 
more than 3 months with highly skilled engineers to create 
the proprietary dataset.

The result of the proposed regression is as shown:
Accuracy is 0.9047, MSE: 58.5980, RMSE: 7.6549, 

MAE: 4.0938, R^2: 0.9047.

3.2 � Fairness computing for trust of AI

Due to the regression nature of this problem, only three 
fairness metrics were examined using our datasets. In other 
words, a greater number of fairness metrics can be applied to 
classification problems. The results of our study will serve as 
a benchmark for comparisons with other datasets. The Theil 
index is a measure of economic inequality and, similar to 
other inequality metrics, a lower Theil index value indicates 
a more equal distribution. Therefore, a lower Theil index is 
generally considered better.

A consistency score closer to 1 is generally considered 
better. This score indicates a high level of consistency in 
the data or model, which is a desirable attribute in many 
contexts, particularly in machine learning and data analysis. 
A score of 1 typically signifies perfect consistency.

The statistical parity difference is a measure used in fair-
ness metrics, particularly in machine learning models. A 

value close to zero indicates that the outcomes of the model 
are fair across different groups. Therefore, a statistical par-
ity difference value closer to zero is generally considered 
better as it signifies a more fair and unbiased model. The 
findings suggest that our dataset exhibits consistent fairness. 
It is important to note, however, that these results have not 
been compared with those from existing studies:

theil_index: 0.1182.
consistency_score: 0.9047.
statistical parity difference: 0.0

4 � Discussion

Many fairness metrics can be used in classification problems 
between two groups to be compared on fairness. However, 
in regression, three fairness metrics such as Theil index, 
consistency score, and statistical difference are calculated. 
Theil index of 0.1182 in regression suggests that there is 
a very weak positive relationship between the independent 
variable and the dependent variable. The consistency score 
with (1 − mse/(y_test)): 0.9047 in regression indicates a very 
good fit between the independent and dependent variables. 
Statistical parity difference is a measure of fairness in a 
model relative to a protected attribute. A value of 0 indicates 
that the model is perfectly fair, while values between −0.1 
and 0.1 are generally considered to be reasonably fair. In the 
context of regression analysis, statistical parity difference 
can be used to evaluate the fairness of a regression model 
with respect to a protected attribute. A statistical parity 
difference of 0.0 would indicate that the model is perfectly 
fair with respect to the protected attribute, meaning that 
there is no difference in the predicted outcomes for different 
groups defined by the protected attribute.

This paper shows how to build the dataset for two ensem-
ble methods such as random forest and extra trees and the 
ensemble–ensemble method using stacking regressor with 
three regressors including lightgbm, xgboost, extra trees 
with meta-regressor including random forest regressor. The 
mlxtend stacking is an ensemble–ensemble machine learn-
ing method. The random forest regressor performed best as 
a meta-regressor.

Table 2   Cross-validation average prediction accuracy

Method Cross-validation average prediction accuracy

Random forest regressor 0.5986: [0.60847767 0.60346399 0.59708295 0.60437557 0.57247037 0.61394713 0.59389243 0.60619872 
0.58295351 0.60391978]

Extra trees regressor 0.592: [0.59799453 0.59845032 0.58842297 0.60118505 0.57064722 0.60665451 0.59434822 0.5952598 
0.58067457 0.58659982]

Ensemble–ensemble regressor 0.908: [0.9121502 0.90925775 0.90681729 0.9073827 0.91054546 0.91035381 0.91701385 0.91333652 
0.90334382 0.89268235]
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Table  2 shows that the stacking method or ensem-
ble–ensemble method achieved high prediction accuracy 
exceeding 0.9 with tenfold cross-validation. For the ran-
dom forest regressor and extra tree regressor, the prediction 
accuracy is about 0.6 with tenfold cross-validation. Stack-
ing regressor or ensemble–ensemble can take advantage of 
strengthening individual ensemble methods automatically 
for improving the prediction accuracy.

The proposed stacking method or ensemble–ensemble 
method can be applied to improving deep learning. The 
better the prediction accuracy, the shorter the drilling time 
is. The shorter the drilling time, the more sustainable the 
shaft excavator will be.

The prototype autonomous AI shaft excavator we 
developed is actually in use at construction sites such as the 
Central Shinkansen Line and others in Japan. Remember that 
skilled operators and engineers are needed to create high-
quality datasets for the tacit knowledge transfer. The larger 
the dataset, the better the prediction accuracy is.

The proposed stacking method or ensemble–ensemble 
method achieved the prediction accuracy over 0.9 in 
tenfold cross-validation. The proposed prototype AI shaft 
excavators have been used in actual construction fields and 
sites in Japan. This paper presented a case study of human 
management in which highly skilled engineers are replaced 
by AI. In other words, the skills of super-engineers, which 
are difficult to pass on, were successfully absorbed by the 
multi-sensory dataset with 16 multi-sensory determinants. 
This paper presented a specific real-world problem of how to 
replace operators or engineers with tacit knowledge for green 
technology and sustainability. This problem is significant 
because the construction sector is a major contributor to 
global CO2 emissions. The proposed method uses AI to 
capture the tacit knowledge of highly skilled operators 
and engineers. This knowledge can then be used to train 
AI-powered machines that can perform the same tasks as 
the human operators. The proposed method can be applied 
to general tacit knowledge management as long as datasets 
can be created.

The results of the fairness metrics examination on our 
datasets (theil_index: 0.1182, consistency_score: 0.9047, 
statistical parity difference: 0.0) affirm their consistent 
fairness.

5 � Conclusion

The proposed stacking method or ensemble–ensemble 
method achieved high prediction accuracy exceeding 0.9 
with tenfold cross-validation. This method can be applied to 
improving deep learning and reducing drilling time, which 
will make shaft excavators more sustainable. The proposed 
method can also be applied to general tacit knowledge 

management as long as datasets can be created. This paper 
demonstrated computational fairness with datasets. This 
study illustrates how tacit knowledge can fuel innovation to 
enhance sustainability.

APPENDIX

APPENDIX: Ensemble–ensemble source 
code: crossst_fair.py

# -*- coding: utf-8 -*-
import sys,codecs.
import numpy as np.
np.random.seed(0).
import pandas as pd.
import sys.
import warnings.
warnings.filterwarnings(“ignore”).
import logging.
logging.getLogger().setLevel(logging.ERROR).
filename = all2. ‘csv’.
trees = 493.
dig = pd.read_csv(filename).
dig.fillna(0,inplace = True).
crossv = 10.
print(‘filename:’,filename).
print(“data instances and parameters:”,dig.shape).
#print(“cross-validation:”,crossv).
print(“trees:”,trees).
X = dig.drop([‘Layer’, ‘SPT’],axis = 1).
y = dig[‘SPT’].
print(‘max SPT’,max(y)).
print(‘min SPT’,min(y)).
from sklearn.ensemble import ExtraTreesRegressor.
from sklearn.ensemble import RandomForestRegressor.
from mlxtend.classifier import StackingClassifier.
from mlxtend.regressor import StackingRegressor.
import xgboost as xgb.
from sklearn.model_selection import cross_val_score.
from sklearn.metrics import *
from sklearn.model_selection import ShuffleSplit.
from sklearn.model_selection import train_test_split.
from sklearn.metrics import mean_squared_error, mean_

absolute_error, r2_score.
from aif360.sklearn.metrics import disparate_impact_

ratio,average_odds_error,generalized_fpr,average_odds_
difference,kl_divergence,between_group_generalized_
entropy_error.
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from aif360.sklearn.metrics import generalized_
fnr,difference,statistical_parity_difference,equal_opportu-
nity_difference,conditional_demographic_disparity,theil_
index,consistency_score,class_imbalance.

from aif360.metrics import BinaryLabelDatasetMetric.
from aif360.metrics import ClassificationMetric.
from aif360.datasets import BinaryLabelDataset.
from aif360.sklearn.detectors import bias_scan.
from aif360.detectors.mdss.Scor ingFunctions.

ScoringFunction import ScoringFunction.
import lightgbm as lgb.
#cv = ShuffleSplit(n_splits = crossv, test_size = 0.3, 

random_state = 54).
lg = lgb.LGBMRegressor(num_leaves = 31,learning_

rate = 0.48,n_estimators = 182).
xg = xgb.XGBRegressor(n_estimators = trees).
ext = ExtraTreesRegressor(n_estimators = trees, max_

depth = None,min_samples_split = 2, random_state = 0).
rf = RandomForestRegressor(n_estimators = trees).
sclf = StackingRegressor(regressors = [lg,ext,xg],me

ta_regressor = rf).
X_train,X_test,y_train,y_test = train_test_split(X,y, test_

size = 0.2, random_state = 54).
#scores = cross_val_score(sclf, X, y, cv = cv).
#print(scores,scores.mean(),round(scores.std(),6)).
sclf.fit(X_train,y_train).
y_pred = sclf.predict(X_test).
print(sclf.score(X_test,y_test)).
mse = mean_squared_error(y_test, y_pred).
r mse  =  mean_squared_er ro r (y_ tes t ,  y_pred , 

squared = False).
mae = mean_absolute_error(y_test, y_pred).
r2 = r2_score(y_test, y_pred).
print(‘MSE:’, mse).
print(‘RMSE:’, rmse).
print(‘MAE:’, mae).
print(‘R^2:’, r2).
##print(‘disparate impact:’,disparate_impact_ratio(y_test, 

y_pred)).
#print(‘average odds error:’,average_odds_error(y_test, 

y_pred)).
#print(‘average_odds_difference:’,average_odds_

difference(y_test,y_pred)).
#print(‘equal_opportunity_difference:’,equal_opportu-

nity_difference(y_test,y_pred)).
#pr in t ( ‘between_group_genera l ized_entropy_

error:’,between_group_generalized_entropy_error(y_test,y_
pred)).

# p r i n t ( ‘ c o n d i t i o n a l _ d e m o g r a p h i c _
disparity:’,conditional_demographic_disparity(y_test,y_
pred)).

#print(‘KL_divergence:’,kl_divergence(y_train + y_test)).

#print(‘class_imbalance:’,class_imbalance(y_train + y_
test)).

y_pred = pd.DataFrame(y_pred)[0].
print(y_pred.shape,y_test.shape,len(y_test)).
def theil_index(y_test, y_pred):
# Calculate the ratio of predicted to actual values.
ratio = y_pred / y_test.
# Calculate the natural logarithm of the ratio.
log_ratio = np.log(ratio).
# Calculate the Theil index.
theil_index = np.sum(ratio * log_ratio)/len(y_test).
return theil_index.
print(“The Theil index is:”, theil_index(y_test,y_pred)).
print(‘theil_index:’,theil_index(y_test,y_pred)).
print(‘consistency_score:’,1—(mse / np.var(y_test))).
#print(‘consistency_score:’,consistency_score(X_test,y_

pred)).
print(‘statistical parity difference:’,statistical_parity_ 

difference(y_train + y_test)).
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