
NEUROCOMPUTINC

ELSEVIER Neurocomputing 8 (1995) 141-156

Neural network parallel computing for multi-layer channel
routing problems

Kyotaro Suzuki +*, Hideharu Amano a, Yoshiyasu Takefuji b

a Department of Computer Science, Keio University, Japan
b Department of Electrical Engineering and Applied Physics, Case Western Uniuersity, Cleveland,

OH 44106, USA

Received 6 April 1993; accepted 1 February 1994

Abstract

Multi-layer channel routing is one of cumbersome jobs in automatic layout design of
VLSI chips and PCBs. As VLSI chips have been used in every field of electrical engineer-
ing, it becomes more important to reduce the layout design time. With the advancement of
the VLSI technology, four-layer problems can be treated and the algorithms for more than
four-layer problems will be demanded in the near future. Proposed algorithm can treat
2 x n-layer problems in parallel. In this paper, the algorithm is introduced and implemented
on a multiprocessor system. By minimizing the communication overhead and load unbal-
ance between processors, the performance with 8 processors is improved by between 6 and
6.5 times compared with the sequential version.

Keywords: VLSI layout, Channel routing, Hopfield neural network, Multiprocessor

1. Introduction

Multi-layer channel routing problems are proved to be NP-complete and one of
cumber-some jobs in automatic layout design of VLSI chips and PCBs.

The problem is not only to route the given interconnections between terminals
in two parallel horizontal rows on the multi-layer channel without overlapping
each other, but also to minimize the channel area. Many sequential algorithms for
the two-layer channel routing problems have been proposed [l-14].

Each set of terminals must be interconnected through a routing path which
consists of only one horizontal segment and several vertical segments. The horizon-
tal segments and the vertical segments must be routed on different layers respec-

0925-2312/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDI 0925-2312(94)00014-J

142 IC Suzuki et al. / Neurocomputing 8 (1995) 141-156

The top row of terminals

net A -4-L net B

t

The bottom row of terminals
Fig. 1. Cyclic problem.

tively. In some sequential algorithms [3,7-141, doglegging has been introduced,
where only a horizontal segment of a routing path is split into two or more than
two horizontal segments. Doglegging is effective to reduce the number of tracks of
the channel and to solve the cyclic conflict. The cyclic conflict occurs when net A
has a top terminal at the same column where net B has a bottom terminal while
net A has a bottom terminal at the same column where net B has the top terminal
(Fig. 1). However, it occurs infrequently and it can often be avoided by rearranging
the terminal placement. Doglegging requires additional via holes which reduce the
reliability of the VLSI system and increase the manufacturing cost. Therefore,
doglegging is not introduced to the proposed algorithm in this paper.

In order to reduce the channel area further, sequential algorithms for two-layer-
and-over-the-cell channel routing problems [15-201, and three-layer channel rout-
ing problems [21,22] have been proposed. The over-the-cell algorithms use not only
the channel area but also the area over the cells for interconnections. Although
these algorithms can find better solutions, they are still based on two-layer routing
technique, so that it is not easy to apply them for more than three-layer problems.

As VLSI chips have been used in every field of electrical engineering, it
becomes more important to reduce the layout design time. Several parallel channel
routing algorithms have been proposed and implemented on parallel processor
systems [23-311.

The algorithm for more than four-layer channel problems is demanded in the
near future. Proposed algorithm [32,33] can solve more than four-layer problems
flexibly and it is suited for parallel computing. The algorithm has been imple-
mented on a multiprocessor system and the performance is evaluated.

In Section 2, the multi-layer channel routing problem is introduced with some
definitions. The problem is represented by the neural network model, and the
algorithm is introduced in Section 3. In Section 5, the algorithm is implemented on
the target multi-processor system ‘ATTEMPT-O’ introduced in Section 4. The
experimental results are shown and evaluated in Section 6. Finally, conclusions are
described in Section 7.

R Suzuki et al. /Neurocomputing 8 (1995) 141-156 143

a net column

a horizontal
segment

trac a virtical
segment

layer

1
a terminal row

fY5$$pq the channel area

Fig. 2. The channel routing problem.

2. Definitions

On a chip for channel routing, all standard cells have the same height and stand
in rows. A channel consists of two parallel horizontal rows of points which are
called terminals and the area between them in Fig. 2. Each terminal is placed at
regular intervals and can be distinguished from each other by the column and the
end (top end or bottom end) at which the terminal is placed.

A net consists of a set of terminals at one or both ends that must be
interconnected through some routing paths. A path consists of only a horizontal
segment parallel to the terminal rows and several vertical segments. The horizontal
segments an the vertical segments must be assigned on different layers respec-
tively.

Some pairs of two layers are used for the multi-layer channel routing problem.
Each net is routed on a pair of two layers. One is for only a horizontal segment,
and the other is for the vertical segments. The connections between those seg-
ments are made through via holes.

Any two routing paths on the same layer cannot be placed within some distance,
which is called separation condition. A unit grid is superimposed on the channel
where the size of one unit satisfies the separation condition. All the terminals are
located at the grid points and all the routing paths on the channel must follow grid
lines. The horizontal gridlines are called tracks and the virtical grid lines are called
columns. The separation condition is that any two nets must be embedded neither
on the same track nor on the same column. If they overlap there, which is called
overlapping condition. If the segments of other nets are overlapping on the same
grid, the separation condition is not satisfied. All the routing paths on the channel
must follow the grid lines.

The multi-layer channel routing problem is not only to route the interconnec-
tions between the terminals in the same net without overlapping but also to

144 K Suzuki et al. / Neurocomputing 8 (1995) I41 -156

minimize the channel area, that is to minimize the number of tracks as long as the
number of layers is constant.

3. Algorithm

The quality of a multi-layer channel routing algorithm is described by total
channel area which is the number of layers multiplied by the number of tracks, the
average number of iteration steps to converge on a solution, and convergence
frequency for the benchmarks under many conditions. The quality of the proposed
algorithm is discussed in [32,33].

3.1. The definition of V;.,

Proposed algorithm is based on a three dimensional Hopfield neural network
model which consists of a large number of massively interconnected simple
processing elements (neurons).

The i;ikth processing element has two valuables, Fjk and iJjk. Kjk is output
from the processing element while qjk is the input into the processing element.

The output yj, based on the modified McCulloch-Pitts neuron model is
described as following. In the expression, m is the number of tracks of the channel,
and t means time.

1, if Uijk(t) > 0 and

qjktt) =max{Qr<t>}
forq=O ,..., m-l,r=O ,..., l-l.

b, otherwise.

3.2. System representation by the neural network model

Fig. 3 shows a channel routing problem in [7] where ten nets are given to be
routed in the four-layer channel which has three tracks on each layer. Each
terminal of a net is labeled by the same number. For example, the top terminal at

Column#: 0 1 2 3 4 5 6 7 8 910 11

TopTerminals IIIIIIIIIIII
034056 3899

NetU
124241578768

Bottom Terminals / f ;) ; ; : 1 I I 1 /

Fig. 3. A lo-net-3-track problem.

IC Suzuki et al. / Neurocomputing 8 (1995) 141-156 145

Net# -
0123456789

k
Net#

Tmck# 0123456789
0

(k=l)
1

1
2

Fig. 4. The output state of neurons.

3rd column and the bottom terminals at 2nd column and at 4th column are in the
net 4 because they are labeled by 4.

In the algorithm, doglegging and cyclic conflict are not treated because of the
reason described in Section 1. Only a horizontal segment for a net is embedded,
and the vertical segments of the net are automatically assigned on the layer
corresponding to the layer on which the horizontal segment of the net is assigned.
The channel routing problem can be simplified into the layer-track problem to find
the layer number and the track number for embedding the horizontal segment of
the given net without violating the overlapping conditions.

6(= #trucks x #layers = 3 x 2) processing elements (neurons> are used to indi-
cate on which layer and track only one horizontal segment of a given net should be
embedded. 60(= #nets x #trucks x #layers = 10 x 3 x 2) neurons are used in to-
tal because 6 neurons are used for each net and the number of nets is 10.
Generally, n x m x 1 neurons are used to represent a problem with n nets, m
tracks, and 2 x 1 layers. L layers are for the horizontal segments and the other 1
layers are for the vertical segments.

Fig. 4 shows the output state of neurons for the problem in Fig. 3. The output
Fjk corresponds to the ith net and the jth track on the kth layer for i = 0,. . . , 10
- 1, j=O,..., 3 - 1, k = 0, 2 - 1. The output of only one neuron among the 3 x 2
neurons corresponding to a net should be nonzero to locate the net on one of the 3
tracks of 2 layers. The nonzero output means that the net should be embedded on
the corresponding track and layer. The black square indicates nonzero output of
the neurons and the white squares indicate the zero output of the neuron. For
example, V,,*,, = 1 in Fig. 4. It means that the horizontal segment of net 2 is
embedded on track 2 of layer 0. Fig. 5 shows the routing solution corresponding to
Fig. 4.

3.3. The overlapping conditions

Each net must satisfy the separation conditions, in
different nets must not violate the overlapping conditions.

other words, any two

146 K Suzuki et al. / Neurocomputing 8 (1995) 141-156

1st Two-Layer Channel

I!;!!,
22 5776

2nd Two-Layer Channel
?&zY

Fig. 5. The routing solution.

Fig. 6 shows the overlapping conditions for the horizontal segments of the net
where head, indicates the left-most column number of the ith net and tail,
indicates the right-most column number of the ith net. The horizontal overlapping
conditions for the ith-net-jth-track&h-layer neuron are as following:

n-l n-l

c ‘pjk + c %jk
p=o p=o
p#i p#i

head, s head, 2 tail, head,, 5 headi 5 tail,

The value of this horizontal condition is the number of the horizontal segments of
the other nets overlap the horizontal segment of the ith net on the jth track of the
k th layer.

horizontal segment of the p-th net

’ horizontal segment of the I-th net
I

headi headp _ ta& hfli

Overlapping Condition : head, 5 head, L tail,

head i
headp 1 m tailp taili

head i taili

headp) I_ 1 tailp

Overlapping Condition : head P 2 headi 2 taib

Fig. 6. Overlapping conditions for horizontal segments.

K Suzuki et al. / Neurocomputing 8 (1995) 141-156 147

top terminal of channel

q-th

j-th

track

track W vertical segment of the i-th net

1 1 vertical segment of the p-th net

bottom terminal of channel

Overlapping Condition : j gq

vertical segment of the p-th net
j-th track

q-th track t--l vertical segment of the i-th net

Overlapping Condition : j &

Fig. 7. Overlapping conditions for vertical segments.

Fig. 7 shows the overlapping conditions for the vertical segments of the nets
where the ith net and the pth net have the terminals on the opposite sides of the
same column. The vertical overlapping conditions for the ith-net-jth-track-k th-layer
neuron are given by:

n-l i n-l m-l

C Tip C V,qk + C Bip C vpqk
p=o q=o p=o q=j
p#i p#i

where Tip is 1 if the pth net has a bottom terminal at the column at which the ith
net has a top terminal, 0 otherwise, and Bi, is 1 if the pth net has a top terminal
at the column at which the ith net has a bottom terminal, 0 otherwise. The value
of the vertical condition is the number of the vertical segments of the other nets
which overlap the vertical segments of the ith net on the jth track of the k th layer.

3.4. The motion equation of i&

The motion equation of the ith-net-jth-track-kth-layer neuron for a n-net-m-
track-2k-layer problem is given as following:

(n-1 j n-l m-l \ /m-11-1 \

C Ti,CI/,,k
p=o q=o

+ C Bip C
p=o 4=J

V pqk c cviqr
,q=Or=O J

\p+i p#i

148 IC Suzuki et al. / Neurocomputing 8 (1995) 141-156

The first term (A-term) forces only one output among the 1 x m neurons to be
nonzero where the ith net is assigned. The second and third terms (B-terms)
perform the inhibitory forces. The B-terms discourage the output of the ijkth
neuron to be nonzero if the other nets overlap with the ith net. The last term
(C-term) provides the hill-climbing which allows the state of the system to escape
from the local minimum and to converge on the global minimum. The C-term
encourages the output of the ijk th neuron to be nonzero if the output of all the
neurons for the ith net is zero. The function h(x) is 1 if x = 0, 0 otherwise. A, B,
and C are constant coefficient, and t is for time.

3.5. The main flow of the algorithm

Using the first order Euler method, the main flow of the algorithm is described
as following.
(0)
(1)

(2)
(3)

Set t =b,A = B = 1, C = 10, U_max = 20, U_min = -20, and T_max = 500.
All Q,,(t) (for i = 0,. . .,tz - 1, j = O,.. . , m-l, and k = 0,. ..,l- 1) are uni-
formly randomized between 0 and U_min, and assign 0 to all Kjk(t) (for
i=O , . . . , n - 1, j = 0,. . . , m - 1, and k = 0,. . . , 1 - 1).
Use the motion equation to compute all dQj,/dt
Compute all qjk(t + 1).

UijkCt + ‘1 = VjkCt) + dt

(4) Check all Uijk(t + 1).

1 U_min,
UijkCt + l) =

if Uijk(t + 1) < U_min.
u_max

7 if fYijk(t + 1) > U_max.

(5)
(6)

Compute all yjk(t + 1).
If all nets are embedded without conflicts or t = T_max then terminate this
procedure else increment t by 1 and return to step 2.

4. Target machine

The algorithm was implemented on a multiprocessor testbed ATTEMPT-O (A
Typical Testing Environment of MultiProcessor sysTem version 0) 1341 developed
at Keio University. In this system, ten processors are connected with a shared
memory through the IEEE Futurebus.

Each processor board consists of a CPU/FPU (68030/68882), a 4MB local
memory system and a write through snooping cache (Fig. 81, and a special
communication mechanism called the synchronizer which is provided for synchro-
nization and high speed data multicasting.

Instead of using a dedicated shared memory board, the local memory of a
processor board can be used as a shared memory. The multiprocessor system used

IC Suzuki et al./Neurocomputing 8 (1995) 141-156 149

Futurebus (IEEE 896.1 1987)

Hardware Event Monitor

Extension Boards

Fig. 8. A target multiprocessor: ATTEMPT-O.

in this experiment comprises eight processors each of which provides the 4MB
local memory and the 8MB shared memory because two processor boards are used
only as the shared memory.

5. Implementation

Although a lot of parallel routing algorithms have been proposed and imple-
mented on multiprocessor systems 123-311, any channel routing algorithm which
can treat more than four-layer problems and/or which is based on a neural
network model has not been implemented.

In the algorithm, each neuron can be a unit of parallel computing. However,
when neurons for a net are assigned on different processors, a large amount of
communication is required between them. In order to alleviate it, a net is chosen
as a unit of parallel computing and all neurons for a net are assigned on the same
processor.

In an iteration step of the Euler method, every processor updates variables U
and V until all processors recognize the convergence of the system.

Our target multiprocessor system, AlTEMPT- provides both local and shared
memories. To make the best use of the structure of ATTEMPT-O, variables which
are not needed to be shared must be located on the local memory as much as
possible. All the variables V are needed for updating each valuable U while only
the variables LJ of a net are needed for updating the variables V of the net. Thus,
the variables V should be located on the shared memory while the variables U are

150 K Suzuki et al. /Neurocomputing 8 (1995) 141-156

Table 1
Benchmark problems

Problem Number
of nets

Number
of terminals
in all nets

Example 3a 45 120
Example 3c 54 152
Example 5 61 168
Deutsch’s 12 302

located on the local memory.
To maintain the load balancing between processors, we used the following two

methods:
l Simple method: Nets are assigned into processors so as to minimize the differ-

ence between the number of nets per processor.
l Modified method: Nets are assigned into processors so as to minimize the

difference not only between the number of nets per processor but also on the
total number of terminals in nets per processor. Although the load unbalance is
reduced, it takes a setup time to assign nets into processors with this method.
In order to keep consistency, processors must be synchronized after step 1, after

step 4, after step 5, and at step 6 in the main flow of the algorithm in Section 3.5.

6. Experimental results

The benchmark problems in [7] are often used for evaluation of channel routing
algorithms. Four problems in those benchmark problems, Example 3(a), Example
3(c), Example 5, and Deutsch’s difficult example are used in this experiment. Table
1 shows the number of nets and the total number of terminals in all nets for each
problem.

In order to evaluate the execution time under the same condition, the number
of layers is set to be four and the number of iteration steps for updating variables
U and V is set to be a constant 100. This constant number is the average number
of iteration steps until the neural network model converges on a solution.

6.1. Execution speed

Fig. 9 and Fig. 10 shows the improvement of execution speed by using the
simple method and the modified method respectively. The execution speed is
compared with that of the sequential version executed with one processor. Be-
tween 5.0 and 6.0 times improvement is achieved with 8 processors by using the
simple method. By using the modified method, it is improved to be between 6.0
and 6.5 times with 8 processors, and the difference of the execution speed between
problems is reduced. Even in Deutsch’s difficult example, the speed up is linear.

K Suzuki et al. /Neurocomputing 8 (1995) 141-156 151

E 650

3 600

B p 550

I& 500

450

400

350

300

250

200

150

Deutsch’s

I I I I I I I

2 3 4 5 6 I 8

the number of processors

Fig. 9. The number of processors V.S. the speed up rate (simple method).

6.2. Cache hit ratio

Fig. 11 shows the number of processors V.S. the cache hit ratio in Deutsch’s
difficult example. The cache hit ratio is kept high (Fig. 11) because the communi-
cation between processors using the shared memory is mainly for the variables I/.

400 -

350 -

300 -

250 - Deutsch’s

2 3 4 5 6 7 5

the number of processors

Fig. 10. The number of processors V.S. the speed up rate (modified method).

152

Shared variables for synchronization are located on the special communication
mechanism called synchronizer, and do not degrade the cache hit ratio. Though
the ratio decreases with the number of processors, maintains larger than 97% even

K Suzuki et al./Neurocomputing 8 (1995) 141-156

I I I I I I I

99.40 -

99.00

99.20 I

98.80

98.60,

98.20

98.40 i

1
98.00

91.80

97.60 i

97.40 -

97.20 r ’ I I I I I Il
2 3 4 5 6 7 8

the number of processors

Fig. 11. The number of processors V.S. cache hit ratio.

; 1.00 L

2
.i 0.80 L

2 c

1 0.60

8

0.40

0.20

0.00 t

C3 sync

0 write
I replace

L ! 1

2 4 6 8 . . _
tne number or processors

Fig. 12. The number of processors V.S. communication overhead.

K Suzuki et al. / Neurocomputing 8 (1995) 141-156 153

2 3 4 5 6 7

II

8
the number of processor

Fig. 13. The number of processors vs. bus congestion ratio.

in the worst case because of the continuous data access by the nature of the
algorithm. The high cache hit ratio contributes high speed execution.

6.3. Communication overhead

Fig. 12 shows the ratio of the communication overhead to the total execution
time in Deutsch’s difficult example. The overhead of the synchronization (sync)
does not appear in the figure because processors are synchronized only a few times
in each iteration. The overhead of writing data (write) is small while the overhead
of the cache block replacing (replace) dominates the communication overhead. It
is caused by the large cache block size (64byte) and relatively slow block data
transfer on the bus of ATTEMPT-O. Since the local memory is effectively utilized
in the implementation, the ratio of communication overhead is kept low (1.1% in
maximum).

Fig. 13 shows the ratio of waiting time caused by the bus congestion to the total
execution time in Deutsch’s difficult example. Although it increases with the
number of processors, it is kept less than 1.1%.

More than 8 processors can be used effectively for better performance because
cache hit ratio is kept high, and both the ratio of communication overhead and the
ratio of bus waiting time are kept low.

7. Conclusion

Through the implementation and experiment on a multiprocessor, between 6.0
and 6.5 times improvement with 8 processors have been achieved. Because the

154 K Suzuki et al. /Neurocomputing 8 (1995) 141-156

cache hit ratio is kept high while the ratio of communication overhead and waiting
time to the total execution time is kept low.

The algorithm was implemented on a relatively small multiprocessor system.
However, considering the experimental results, implementation in this paper can
be effectively extended for a larger scale multiprocessor system even without the
shared memory.

Acknowledgement

We would like to thank Junichi Yamato for his assistance in analysis about the
experimental results and Nobuo Funabiki for his advice in converting the algo-
rithm from an sequential machine into a multiprocessor system.

References

[l] A. Hashimoto and J. Stevens, Wire routing by optimizing channel assignment with large apertures,
Proc. 8th Design Automation Workshop (1971) 155-169.

[2] B.W. Kernighan, D.G. Schweikert, An optimum channel-routing algorithm for polycell layouts of
integrated circuits, Proc. 10th Design Automation Workshop (1973) 50-59.

[3] D.N. Deutsch, A dogleg channel router, Proc. 13th Design Automation Conf. (1976) 425-433.
[4] S. Sahni and A. Bhatt, The complexity of design automation problems, Proc. 17th Design

Automation Conf (19801402-411.
[5] AS. LaPaugh Algorithms for integrated circuits layout: An analytic approach, Ph.D. dissertation,

MIT. Lab. Computer Science, 1980.
[6] D. Dolev et al., Optimal wiring between rectangles, Proc. 13th Annual ACM Symp. Theory of

Comput. (19811312-317.
171 T. Yoshimura and E.S. Kuh, Efficient algorithms for channel routing, IEEE Trans. CAD, CAD-l,

(1) (Jan. 1982) 25-35.
[8] R.L. Rivest and C.M. Fiduccia, A greedy channel router, Proc. 29th Design Automation Conf.

(1982) 418-424.
[9] H.W. Leong and CL. Liu, A new channel routing problem, Proc. 20th Design Automation Conf

(1983) 584-590.
[lo] M. Burstein and R. Pelavin, Hierarchical wire routing, IEEE Trans. CAD CAD-2 (4) (Oct. 1983)

223-234.
[ll] T.G. Szymanski, Dogleg channel routing is NP-complete, IEEE Trans, CAD CAD-4 (1) (Jan. 1985)

31-41.
[12] J. Reed, A. Sangiovanni-Vincentelh and M. Santomauro, A new symbolic channel router: YACR2,

IEEE Trans. CAD CAD-4 (3) (July 1985) 208-219.
[13] H.W. Leong, D.F. Wong and C.L. Liu, A simulated-annealing channel router, Proc. ZCCAD-85

(1985) 226-228.
[14] R. Joobbani and D.P. Siewiorek, Weaver: A knowledge-based routing expert, Proc. 22nd Design

Automation Con& (1985) 266-272.
[15] D.N. Deutsch and P. Glick, An over-the-cell router, Proc. 17th IEEE/ACM Design Automation

Conf. (1980) 32-39.
[161 H.E. Krohn, An over-cell gate array channel router, Proc. 20th Design Automation Conf: (1983)

665-670.
[17] Y. Shiraishi and J. Sakemi, A permeation router, IEEE Trans. CAD CAD-6 (3) (May 1987)

462-471.

K Suzuki et al. / Neurocomputing 8 (1995) 141-156 155

[18] G. Gudmundsson and S. Ntafos, Channel routing with superterminals, Proc. 25th Allerton Conf. on
Cornput., Control and Communication (1987) 375-376.

[19] J. Gong, D.F. Wong and C.L. Liu, A new approach to three- or four-layer channel routing, IEEE

Trans. CAD CAD-7 (10) (Oct. 1988) 1094-1104.

1201 J. Cong and C.L. Liu, Over-the-cell channel routing, IEEE Trans. CAD CAD-9 (4) (April 1990)

408-418.

[21] Y.K. Chen and M.L. Liu, Three-layer channel routing, [IEEE Trans. CAD CAD-3 (2) (April 1984)

156-163.

[22] J. Cong, D.F. Wong and CL. Liu, A new approach to the three layer channel routing problem,

Proc. ICCAD-87 (1987) 378-381.
[23] S.C. Chang, J. JiJa, Parallel algorithms for channel routing in the knock-knee model, Proc. Int.

Conf Parallel Processing (1988) 18-25.
1241 S.C. Chang and J. JaJa, Parallel algorithms for river routing, Proc. In?. Co@ Parallel Processing

(1988) 9-13.
[25] SC. Chang and J. J2Ja, Optimal mesh algorithms for VLSI routing, Proc. 2nd Symp. Frontiers

Massively Parallel Comput. (1988) 125-128.

[26] S. Krishnamurthy and J. JaJa, Provably good parallel algorithms for channel routing of multi-

terminal nets, Proc. 2nd Symp. Frontiers Massively Parallel Comput. (1988) 177-180.
[27] A. Iosupovici, A class of array architectures for hardware grid routers, ZEEE Trans. CAD CAD-5

(2) (April 1986) 245-255.

[28] J. Rose, Parallel global routing for standard cells, ZEEE Truns. CAD, CAD-9 (10) (Oct. 1990)

1085-1095.

[29] R.J. Brouwer and P. Banerjee, A parallel simulated annealing algorithm for channel routing on a

hypercube multiprocessor, IEEE ht. Co@ Comput. Design (1988) 4-7.
[30] T. Watanabe, H. Kitazawa and Y. Sugiyama, A parallel adaptable routing algorithm and its

implementation on a two-dimensional array processor, ZEEE Trans. CAD CAD-6 (2) (March

1987).

1311 R.J. Brouwer, P. Banejee, PHIGURE: a parallel hierarchical global router, Proc. 27th Design
Automation Conf (1990) 650-653.

[32] N. Funabiki and Y. Takefuji, A parallel algorithm for channel routing problems, IEEE Trans. CAD
CAD-11 (4) (April 1992) 464-474.

[33] Y. Takefuji, Neural Network Parallel Computing, Kluwer, Dordrecht, 1992).

[34] H. Amano, T. Terasawa and T. Kudoh, Cache with synchronization mechanism, Proc. IFIP
Congress (Aug. 1989) 1001-1006.

Kyotaro Suzuki was born in Chiba, Japan, in 1969. He received the B.E.
degrees from Keio University, Japan, in 1992.

He is now in master course of the department of computer science in Keio
University. His research interests are parallel VLSI CAD and neural networks.

156 II Suzuki et al. /Neurocomputing 8 (1995) 141-156

Hideharu Amano was born in Niigata, Japan, in 1958. He received the B.E.,
M.E., and Ph.D. degrees from Keio University, Japan, in 1981, 1983, and 1986,
respectively.

He is now an Assistant Professor in the Department of Computer Science,
Keio University. His research interests include the area of parallel processing.

Yoshiyasu Takefqji is a tenured associate professor on faculty of environmental
information at Keio University since April 1992 and also on faculty of Electri-
cal Engineering at Case Western Reserve University since 1988. Before joining
Case, he taught at the University of South Florida for two years and the
University of South Carolina for three years. He received his BS (1978), MS
(1980), and Ph.D (1983) from Electrical Engineering from Keio University
under the supervision of Professor Hideo Aiso. His research interests focus on
neural network parallel computing for solving real-world problems. He is
interested in VLSI applications and silicon architecture.

