
NEUROCOMPUTINC 

ELSEVIER Neurocomputing 8 (1995) 141-156 

Neural network parallel computing for multi-layer channel 
routing problems 

Kyotaro Suzuki +*, Hideharu Amano a, Yoshiyasu Takefuji b 

a Department of Computer Science, Keio University, Japan 
b Department of Electrical Engineering and Applied Physics, Case Western Uniuersity, Cleveland, 

OH 44106, USA 

Received 6 April 1993; accepted 1 February 1994 

Abstract 

Multi-layer channel routing is one of cumbersome jobs in automatic layout design of 
VLSI chips and PCBs. As VLSI chips have been used in every field of electrical engineer- 
ing, it becomes more important to reduce the layout design time. With the advancement of 
the VLSI technology, four-layer problems can be treated and the algorithms for more than 
four-layer problems will be demanded in the near future. Proposed algorithm can treat 
2 x n-layer problems in parallel. In this paper, the algorithm is introduced and implemented 
on a multiprocessor system. By minimizing the communication overhead and load unbal- 
ance between processors, the performance with 8 processors is improved by between 6 and 
6.5 times compared with the sequential version. 

Keywords: VLSI layout, Channel routing, Hopfield neural network, Multiprocessor 

1. Introduction 

Multi-layer channel routing problems are proved to be NP-complete and one of 
cumber-some jobs in automatic layout design of VLSI chips and PCBs. 

The problem is not only to route the given interconnections between terminals 
in two parallel horizontal rows on the multi-layer channel without overlapping 
each other, but also to minimize the channel area. Many sequential algorithms for 
the two-layer channel routing problems have been proposed [l-14]. 

Each set of terminals must be interconnected through a routing path which 
consists of only one horizontal segment and several vertical segments. The horizon- 
tal segments and the vertical segments must be routed on different layers respec- 
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The top row of terminals 
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The bottom row of terminals 
Fig. 1. Cyclic problem. 

tively. In some sequential algorithms [3,7-141, doglegging has been introduced, 
where only a horizontal segment of a routing path is split into two or more than 
two horizontal segments. Doglegging is effective to reduce the number of tracks of 
the channel and to solve the cyclic conflict. The cyclic conflict occurs when net A 
has a top terminal at the same column where net B has a bottom terminal while 
net A has a bottom terminal at the same column where net B has the top terminal 
(Fig. 1). However, it occurs infrequently and it can often be avoided by rearranging 
the terminal placement. Doglegging requires additional via holes which reduce the 
reliability of the VLSI system and increase the manufacturing cost. Therefore, 
doglegging is not introduced to the proposed algorithm in this paper. 

In order to reduce the channel area further, sequential algorithms for two-layer- 
and-over-the-cell channel routing problems [15-201, and three-layer channel rout- 
ing problems [21,22] have been proposed. The over-the-cell algorithms use not only 
the channel area but also the area over the cells for interconnections. Although 
these algorithms can find better solutions, they are still based on two-layer routing 
technique, so that it is not easy to apply them for more than three-layer problems. 

As VLSI chips have been used in every field of electrical engineering, it 
becomes more important to reduce the layout design time. Several parallel channel 
routing algorithms have been proposed and implemented on parallel processor 
systems [23-311. 

The algorithm for more than four-layer channel problems is demanded in the 
near future. Proposed algorithm [32,33] can solve more than four-layer problems 
flexibly and it is suited for parallel computing. The algorithm has been imple- 
mented on a multiprocessor system and the performance is evaluated. 

In Section 2, the multi-layer channel routing problem is introduced with some 
definitions. The problem is represented by the neural network model, and the 
algorithm is introduced in Section 3. In Section 5, the algorithm is implemented on 
the target multi-processor system ‘ATTEMPT-O’ introduced in Section 4. The 
experimental results are shown and evaluated in Section 6. Finally, conclusions are 
described in Section 7. 
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Fig. 2. The channel routing problem. 

2. Definitions 

On a chip for channel routing, all standard cells have the same height and stand 
in rows. A channel consists of two parallel horizontal rows of points which are 
called terminals and the area between them in Fig. 2. Each terminal is placed at 
regular intervals and can be distinguished from each other by the column and the 
end (top end or bottom end) at which the terminal is placed. 

A net consists of a set of terminals at one or both ends that must be 
interconnected through some routing paths. A path consists of only a horizontal 
segment parallel to the terminal rows and several vertical segments. The horizontal 
segments an the vertical segments must be assigned on different layers respec- 
tively. 

Some pairs of two layers are used for the multi-layer channel routing problem. 
Each net is routed on a pair of two layers. One is for only a horizontal segment, 
and the other is for the vertical segments. The connections between those seg- 
ments are made through via holes. 

Any two routing paths on the same layer cannot be placed within some distance, 
which is called separation condition. A unit grid is superimposed on the channel 
where the size of one unit satisfies the separation condition. All the terminals are 
located at the grid points and all the routing paths on the channel must follow grid 
lines. The horizontal gridlines are called tracks and the virtical grid lines are called 
columns. The separation condition is that any two nets must be embedded neither 
on the same track nor on the same column. If they overlap there, which is called 
overlapping condition. If the segments of other nets are overlapping on the same 
grid, the separation condition is not satisfied. All the routing paths on the channel 
must follow the grid lines. 

The multi-layer channel routing problem is not only to route the interconnec- 
tions between the terminals in the same net without overlapping but also to 
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minimize the channel area, that is to minimize the number of tracks as long as the 
number of layers is constant. 

3. Algorithm 

The quality of a multi-layer channel routing algorithm is described by total 
channel area which is the number of layers multiplied by the number of tracks, the 
average number of iteration steps to converge on a solution, and convergence 
frequency for the benchmarks under many conditions. The quality of the proposed 
algorithm is discussed in [32,33]. 

3.1. The definition of V;., 

Proposed algorithm is based on a three dimensional Hopfield neural network 
model which consists of a large number of massively interconnected simple 
processing elements (neurons). 

The i;ikth processing element has two valuables, Fjk and iJjk. Kjk is output 
from the processing element while qjk is the input into the processing element. 

The output yj, based on the modified McCulloch-Pitts neuron model is 
described as following. In the expression, m is the number of tracks of the channel, 
and t means time. 

1, if Uijk( t) > 0 and 

qjktt) =max{Qr<t>} 
forq=O ,..., m-l,r=O ,..., l-l. 

b, otherwise. 

3.2. System representation by the neural network model 

Fig. 3 shows a channel routing problem in [7] where ten nets are given to be 
routed in the four-layer channel which has three tracks on each layer. Each 
terminal of a net is labeled by the same number. For example, the top terminal at 

Column#: 0 1 2 3 4 5 6 7 8 910 11 

TopTerminals IIIIIIIIIIII 
034056 3899 

NetU 
124241578768 

Bottom Terminals / f ; ) ; ; : 1 I I 1 / 

Fig. 3. A lo-net-3-track problem. 
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Fig. 4. The output state of neurons. 

3rd column and the bottom terminals at 2nd column and at 4th column are in the 
net 4 because they are labeled by 4. 

In the algorithm, doglegging and cyclic conflict are not treated because of the 
reason described in Section 1. Only a horizontal segment for a net is embedded, 
and the vertical segments of the net are automatically assigned on the layer 
corresponding to the layer on which the horizontal segment of the net is assigned. 
The channel routing problem can be simplified into the layer-track problem to find 
the layer number and the track number for embedding the horizontal segment of 
the given net without violating the overlapping conditions. 

6( = #trucks x #layers = 3 x 2) processing elements (neurons> are used to indi- 
cate on which layer and track only one horizontal segment of a given net should be 
embedded. 60( = #nets x #trucks x #layers = 10 x 3 x 2) neurons are used in to- 
tal because 6 neurons are used for each net and the number of nets is 10. 
Generally, n x m x 1 neurons are used to represent a problem with n nets, m 
tracks, and 2 x 1 layers. L layers are for the horizontal segments and the other 1 
layers are for the vertical segments. 

Fig. 4 shows the output state of neurons for the problem in Fig. 3. The output 
Fjk corresponds to the ith net and the jth track on the kth layer for i = 0,. . . , 10 
- 1, j=O,..., 3 - 1, k = 0, 2 - 1. The output of only one neuron among the 3 x 2 
neurons corresponding to a net should be nonzero to locate the net on one of the 3 
tracks of 2 layers. The nonzero output means that the net should be embedded on 
the corresponding track and layer. The black square indicates nonzero output of 
the neurons and the white squares indicate the zero output of the neuron. For 
example, V,,*,, = 1 in Fig. 4. It means that the horizontal segment of net 2 is 
embedded on track 2 of layer 0. Fig. 5 shows the routing solution corresponding to 
Fig. 4. 

3.3. The overlapping conditions 

Each net must satisfy the separation conditions, in 
different nets must not violate the overlapping conditions. 

other words, any two 
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1st Two-Layer Channel 
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22 5776 

2nd Two-Layer Channel 
?&zY 

Fig. 5. The routing solution. 

Fig. 6 shows the overlapping conditions for the horizontal segments of the net 
where head, indicates the left-most column number of the ith net and tail, 
indicates the right-most column number of the ith net. The horizontal overlapping 
conditions for the ith-net-jth-track&h-layer neuron are as following: 

n-l n-l 

c ‘pjk + c %jk 
p=o p=o 
p#i p#i 

head, s head, 2 tail, head,, 5 headi 5 tail, 

The value of this horizontal condition is the number of the horizontal segments of 
the other nets overlap the horizontal segment of the ith net on the jth track of the 
k th layer. 

horizontal segment of the p-th net 

’ horizontal segment of the I-th net 
I 

headi headp _ ta& hfli 

Overlapping Condition : head, 5 head, L tail, 

head i 
headp 1 m tailp taili 

head i taili 

headp) I_ 1 tailp 

Overlapping Condition : head P 2 headi 2 taib 

Fig. 6. Overlapping conditions for horizontal segments. 
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Fig. 7. Overlapping conditions for vertical segments. 

Fig. 7 shows the overlapping conditions for the vertical segments of the nets 
where the ith net and the pth net have the terminals on the opposite sides of the 
same column. The vertical overlapping conditions for the ith-net-jth-track-k th-layer 
neuron are given by: 

n-l i n-l m-l 

C Tip C V,qk + C Bip C vpqk 
p=o q=o p=o q=j 
p#i p#i 

where Tip is 1 if the pth net has a bottom terminal at the column at which the ith 
net has a top terminal, 0 otherwise, and Bi, is 1 if the pth net has a top terminal 
at the column at which the ith net has a bottom terminal, 0 otherwise. The value 
of the vertical condition is the number of the vertical segments of the other nets 
which overlap the vertical segments of the ith net on the jth track of the k th layer. 

3.4. The motion equation of i& 

The motion equation of the ith-net-jth-track-kth-layer neuron for a n-net-m- 
track-2k-layer problem is given as following: 

(n-1 j n-l m-l \ /m-11-1 \ 

C Ti,CI/,,k 
p=o q=o 

+ C Bip C 
p=o 4=J 

V pqk c cviqr 
,q=Or=O J 

\p+i p#i 
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The first term (A-term) forces only one output among the 1 x m neurons to be 
nonzero where the ith net is assigned. The second and third terms (B-terms) 
perform the inhibitory forces. The B-terms discourage the output of the ijkth 
neuron to be nonzero if the other nets overlap with the ith net. The last term 
(C-term) provides the hill-climbing which allows the state of the system to escape 
from the local minimum and to converge on the global minimum. The C-term 
encourages the output of the ijk th neuron to be nonzero if the output of all the 
neurons for the ith net is zero. The function h(x) is 1 if x = 0, 0 otherwise. A, B, 
and C are constant coefficient, and t is for time. 

3.5. The main flow of the algorithm 

Using the first order Euler method, the main flow of the algorithm is described 
as following. 
(0) 
(1) 

(2) 
(3) 

Set t =b,A = B = 1, C = 10, U_max = 20, U_min = -20, and T_max = 500. 
All Q,,(t) (for i = 0,. . .,tz - 1, j = O,.. . , m-l, and k = 0,. ..,l- 1) are uni- 
formly randomized between 0 and U_min, and assign 0 to all Kjk(t) (for 
i=O , . . . , n - 1, j = 0,. . . , m - 1, and k = 0,. . . , 1 - 1). 
Use the motion equation to compute all dQj,/dt 
Compute all qjk(t + 1). 

UijkCt + ‘1 = VjkCt) + dt 

(4) Check all Uijk(t + 1). 

1 U_min, 
UijkCt + l) = 

if Uijk(t + 1) < U_min. 
u_max 

7 if fYijk( t + 1) > U_max. 

(5) 
(6) 

Compute all yjk(t + 1). 
If all nets are embedded without conflicts or t = T_max then terminate this 
procedure else increment t by 1 and return to step 2. 

4. Target machine 

The algorithm was implemented on a multiprocessor testbed ATTEMPT-O (A 
Typical Testing Environment of MultiProcessor sysTem version 0) 1341 developed 
at Keio University. In this system, ten processors are connected with a shared 
memory through the IEEE Futurebus. 

Each processor board consists of a CPU/FPU (68030/68882), a 4MB local 
memory system and a write through snooping cache (Fig. 81, and a special 
communication mechanism called the synchronizer which is provided for synchro- 
nization and high speed data multicasting. 

Instead of using a dedicated shared memory board, the local memory of a 
processor board can be used as a shared memory. The multiprocessor system used 
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Futurebus (IEEE 896.1 1987) 

Hardware Event Monitor 

Extension Boards 

Fig. 8. A target multiprocessor: ATTEMPT-O. 

in this experiment comprises eight processors each of which provides the 4MB 
local memory and the 8MB shared memory because two processor boards are used 
only as the shared memory. 

5. Implementation 

Although a lot of parallel routing algorithms have been proposed and imple- 
mented on multiprocessor systems 123-311, any channel routing algorithm which 
can treat more than four-layer problems and/or which is based on a neural 
network model has not been implemented. 

In the algorithm, each neuron can be a unit of parallel computing. However, 
when neurons for a net are assigned on different processors, a large amount of 
communication is required between them. In order to alleviate it, a net is chosen 
as a unit of parallel computing and all neurons for a net are assigned on the same 
processor. 

In an iteration step of the Euler method, every processor updates variables U 
and V until all processors recognize the convergence of the system. 

Our target multiprocessor system, AlTEMPT- provides both local and shared 
memories. To make the best use of the structure of ATTEMPT-O, variables which 
are not needed to be shared must be located on the local memory as much as 
possible. All the variables V are needed for updating each valuable U while only 
the variables LJ of a net are needed for updating the variables V of the net. Thus, 
the variables V should be located on the shared memory while the variables U are 
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Table 1 
Benchmark problems 

Problem Number 
of nets 

Number 
of terminals 
in all nets 

Example 3a 45 120 
Example 3c 54 152 
Example 5 61 168 
Deutsch’s 12 302 

located on the local memory. 
To maintain the load balancing between processors, we used the following two 

methods: 
l Simple method: Nets are assigned into processors so as to minimize the differ- 

ence between the number of nets per processor. 
l Modified method: Nets are assigned into processors so as to minimize the 

difference not only between the number of nets per processor but also on the 
total number of terminals in nets per processor. Although the load unbalance is 
reduced, it takes a setup time to assign nets into processors with this method. 
In order to keep consistency, processors must be synchronized after step 1, after 

step 4, after step 5, and at step 6 in the main flow of the algorithm in Section 3.5. 

6. Experimental results 

The benchmark problems in [7] are often used for evaluation of channel routing 
algorithms. Four problems in those benchmark problems, Example 3(a), Example 
3(c), Example 5, and Deutsch’s difficult example are used in this experiment. Table 
1 shows the number of nets and the total number of terminals in all nets for each 
problem. 

In order to evaluate the execution time under the same condition, the number 
of layers is set to be four and the number of iteration steps for updating variables 
U and V is set to be a constant 100. This constant number is the average number 
of iteration steps until the neural network model converges on a solution. 

6.1. Execution speed 

Fig. 9 and Fig. 10 shows the improvement of execution speed by using the 
simple method and the modified method respectively. The execution speed is 
compared with that of the sequential version executed with one processor. Be- 
tween 5.0 and 6.0 times improvement is achieved with 8 processors by using the 
simple method. By using the modified method, it is improved to be between 6.0 
and 6.5 times with 8 processors, and the difference of the execution speed between 
problems is reduced. Even in Deutsch’s difficult example, the speed up is linear. 
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Fig. 9. The number of processors V.S. the speed up rate (simple method). 

6.2. Cache hit ratio 

Fig. 11 shows the number of processors V.S. the cache hit ratio in Deutsch’s 
difficult example. The cache hit ratio is kept high (Fig. 11) because the communi- 
cation between processors using the shared memory is mainly for the variables I/. 

400 - 

350 - 

300 - 

250 - Deutsch’s 

2 3 4 5 6 7 5 

the number of processors 

Fig. 10. The number of processors V.S. the speed up rate (modified method). 
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Shared variables for synchronization are located on the special communication 
mechanism called synchronizer, and do not degrade the cache hit ratio. Though 
the ratio decreases with the number of processors, maintains larger than 97% even 
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Fig. 11. The number of processors V.S. cache hit ratio. 
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Fig. 12. The number of processors V.S. communication overhead. 
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Fig. 13. The number of processors vs. bus congestion ratio. 

in the worst case because of the continuous data access by the nature of the 
algorithm. The high cache hit ratio contributes high speed execution. 

6.3. Communication overhead 

Fig. 12 shows the ratio of the communication overhead to the total execution 
time in Deutsch’s difficult example. The overhead of the synchronization (sync) 
does not appear in the figure because processors are synchronized only a few times 
in each iteration. The overhead of writing data (write) is small while the overhead 
of the cache block replacing (replace) dominates the communication overhead. It 
is caused by the large cache block size (64byte) and relatively slow block data 
transfer on the bus of ATTEMPT-O. Since the local memory is effectively utilized 
in the implementation, the ratio of communication overhead is kept low (1.1% in 
maximum). 

Fig. 13 shows the ratio of waiting time caused by the bus congestion to the total 
execution time in Deutsch’s difficult example. Although it increases with the 
number of processors, it is kept less than 1.1%. 

More than 8 processors can be used effectively for better performance because 
cache hit ratio is kept high, and both the ratio of communication overhead and the 
ratio of bus waiting time are kept low. 

7. Conclusion 

Through the implementation and experiment on a multiprocessor, between 6.0 
and 6.5 times improvement with 8 processors have been achieved. Because the 
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cache hit ratio is kept high while the ratio of communication overhead and waiting 
time to the total execution time is kept low. 

The algorithm was implemented on a relatively small multiprocessor system. 
However, considering the experimental results, implementation in this paper can 
be effectively extended for a larger scale multiprocessor system even without the 
shared memory. 
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