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Guest editorial 

Presenting the Special issue on Optimization 
and Combinatorics 

The study of combinatorics and optimization (or operations research) continues 
to fascinate scientists from a variety of disciplines. At the center of focus is a 
special class of problems called nondeterministic polynomial-time complete prob- 
lems (commonly called NP problems). For example, there has been no known exact 
solution to the classic Traveling Salesman Problem (TSP) except the exhaustive 
search. Furthermore, there are many everyday examples of optimization problems, 
such as scheduling classes in a school, planning delivery routes, assigning hospital 
beds, assigning aircrafts to terminals, etc. 

One of the earliest attempts to solving the TSP is linear programming. Opti- 
mization based on linear programming began with Dantzig’s development of the 
Simplex algorithm (1963) [l], and subsequent improvements by Khachian (1979) [2] 
and Karmarkar (1984) [3]. Meanwhile, pioneers such as Metropolis et al. (1953) [4], 
Kernighan and Lin (1970) [5], Karp (1977) [61, Kirkpatrick et al. (1983) [7], Geman 
and Geman (1984) [8], Hopfield and Tank (1985) [9], and Hinton et al. (1986) [lo], 
also contributed much to the advancement in optimization and combinatorics. 

Since the pioneer contribution by Metropolis in annealing, Kirkpatrick et al. in 
IC chip layout, and the Hopfield-Tank TSP solution, the neural network commu- 
nity has come to a full through Szu and Hartley’s Fast Simulated Annealing in 
1987 [ll], and recently, the mean field annealing (MFA). 

As perhaps self-evident in this current snapshot of 14 papers, such a flourished 
R&D indicates the recurrent emphases on applications, implementations, and 
basic theory. However, the grand challenge of optimization which one does in 
everyday life remains in the intuitive and computational solution of a nonlinear, 
adaptive and parallel approach to the global optimization - the fundamental 
unsolved problem, the second von Neumann problem (see paper: Diuide-and-con- 
quer orthogonality principle for parallel optimizations in TSP by Szu and Foo). 
The ‘adaptivity’ means: when more information/data measurement becomes avail- 
able subsequently whether an early minimum solution can be re-computed with a 
minimum redundant effort. This is trivial if no interaction exists between new and 
old data, and we know that it is usually not true in our daily experience in decision 
making, e.g. in stock market, or in logistic arrangement. In short, can a nonlinear 
optimization be recursively ‘divided-and-conquered’? 
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In this regard, perhaps, fruitful directions lie along the spatiotemporal divide- 
and-conquer principle, i.e. a hybrid ANN consisting of the stochastic ANN and the 
traditional backprop ANN. This hybrid computational solution may overcome the 
local minima problem in multilayer perceptrons, and the slow-down learning at a 
temporal minimum near a flat energy landscape. Otherwise, the deterministic 
ANN algorithm can be used efficiently. 

Another area of much interesting is the current multiresolution analysis ap- 
proach leading to an interesting version of a multiresolution optimization. In other 
words, a coarse scale has a single minimum, while at a fine scale it breeds several 
minima. The question is: Can the scaling equation of wavelet analysis give us a 
handle on these minimization processes? 

This special issue represents a relatively small but significant compilation of the 
growing interests in the applications of artificial neural networks for solving NP 
problems, ranging from vehicle routing, job-shop scheduling, satellite communica- 
tion networks, to circuit partitioning. 

We would like to thank the Editor-in-chief, V. David Sanchez A., for the 
opportunity to edit this special issue. We would also like to express our gratitude 
to all the anonymous reviewers whose comments greatly improved the quality of 
these papers. 

Harold Szu, Yoshiyasu Takefqji and Simon Y. Foo 
Guest editors 
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