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ABSTRACT: A novel approach to the one-dimensional gate assignment problem is
presented in this paper where the problem is NP-hard and one of the most fundamental
layout problems in VLSI design. The proposed system is composed of n � n processing
elements called the arti�cial two-dimensional maximum neurons for (n+ 2)-gate assign-
ment problems. We have discovered the improved solutions in the benchmark problems
over the best existing algorithms. The proposed parallel algorithm is also applicable to
other VLSI layout problems.

INTRODUCTION

A one-dimensional gate is a logic gate and has
been also called a Weinberger array since it was
introduced by Weinberger in 1967 (Weinberger,
1967). Figure 1 shows an example of a represen-
tation of a one-dimensional gate. Figure 1 (a),
(b), and (c) show a logic symbol of a NOR gate, a
circuitry of the NOR gate, and a simpli�ed mask
pattern of the circuitry respectively. Note that
line D is connected to other gates as well as the
other lines. Figure 1 (c) is simply replaced by
Figure 1 (d) in the one-dimensional gate assign-
ment problem where the gate, metal lines, and
contacts are replaced by a vertical line, horizon-
tal lines, and black points respectively (Ohtsuki,
1979). If there is more than one logic gate, the
metal lines of the gates formulate inter-gate con-
nections, nets. Figure 2 (a) shows an example of
a net layout of a one-dimensional gate assignment
problem where Ni means the i-th net. Note that
the leftmost and rightmost gate must be assigned
to the leftmost and rightmost column respectively
in the one-dimensional gate assignment problem.
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For example, gate #0 and gate #14 in Figure 2
(a) must be assigned to column #0 and column
#14 respectively. The following two conditions
must be also satis�ed in the one-dimensional gate
assignment problem:
1. A one and only one gate must be assigned to

one column, and n gates must be assigned to
n columns.

2. The nets must be located in the tracks (rows)
horizontally and must not overlap each other.

The goal of the one-dimensional gate assignment
problem is to assign the gates to the columns in
order to minimize the number of tracks with the
above conditions satis�ed. For example, after op-
timizing the permutation of 13 gates in Figure 2
(a), the minimum (optimal) number of tracks is 7,
as shown in Figure 2 (b).
The One-dimensional gate assignment problem

has proved to be an NP-hard problem (Kashi-
wabara, 1979) and is one of the most fundamental
and important problems in VLSI layout design
because the number of tracks inuences the chip
cost directly. Several algorithms have been pro-
posed to solve the problem. The problem basically
requires two tasks to �nd the minimum number
of tracks: one is gate-ordering and the other is
net-allocation. Some existing algorithms focus
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(a) A logic symbol of a NOR gate.

(c) A simpli�ed mask pattern of (b).

(b) A circuitry of (a).

(d) A representation of (c) by the one-
dimensional gate assignment problem.

Figure 1 An example of a representation by the one-dimensional gate assignment problem.

on �nding a better gate-ordering and then ap-
ply a left-edge-�rst algorithm (Hashimoto, 1971)
which can pack the nets with the smallest number
of tracks within a given gate-ordering. The left-
edge-�rst algorithm is shown in Appendix 1. The
number of possible solutions is O(n!) where n+ 2
is the total number of gates. Ohtsuki et al. con-
verted the problem into a minimum clique number
augmentation problem of an interval graph as one
of graph theory problems with the time complex-
ity of O(n(m + l)) where m and l is the total

number of nets and the augmentation respectively
(Ohtsuki, 1979). Wing et al. also utilized the in-
terval graph representation (Wing, 1985). Hong
et al. converted the nets into a weighted graph
and used a heuristic algorithm with the time com-
plexity of O(n2) (Hong, 1989). Some algorithms
combine the gate-ordering and the net-allocation
without using the left-edge-�rst algorithm (Fu-
jii, 1987; Yamada, 1989; Asano, 1982). Fujii et
al. transformed the problem into a restricted one
and used a heuristic algorithm based on a bidirec-
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(a) Before optimization.

(b) After optimization.

Figure 2 An example of a one-dimensional gate assignment problem.

tional search method (Fujii, 1987). Yamada et al.
proposed a better heuristic algorithm based on a
hierarchical algorithm with the time complexity
of O(iqnp) for 1 � iq � p � 1 where p is the total
number of connections between the nets and gates
(Yamada, 1989). Some algorithms need the good
initial gate-orderings. To our knowledge, no paral-
lel algorithm for this problem has been proposed.
In this paper, a near-optimal parallel algorithm
using a two-dimensional maximum neural network
is proposed for the one-dimensional gate assign-
ment problem, where the state of the neurons
represents a gate-ordering and the left-edge-�rst
algorithm is used to evaluate every neuron.

The �rst arti�cial neural network using sig-
moidal neurons was introduced by Hop�eld and
Tank for solving combinatorial optimization prob-
lems (Hop�eld, 1985). Takefuji et al. have proposed
a hysteresis McCulloch-Pitts neural network and a
one-dimensional maximum (winner-take-all) neu-
ral network for NP-complete problems (Takefuji,
1992). In the next section, we review the basic con-
cept of the arti�cial neural networks and explain
our neural network representation used to solve
the problem, then we describe the neural network
parallel algorithm and discuss the experimental
results where several benchmark problems are
used to justify the e�ectiveness of our algorithm.
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Figure 3 A 13 � 13 neural network array for Figure 2 (b).

In the last section, we summarize this paper and
comment on the future work on other VLSI layout
problems.

THE NEURAL NETWORK REPRESEN-

TATION

The mathematical model of the arti�cial neural
network consists of two components; neurons and
synaptic links. The output signal transmitted from
a neuron propagates to other neurons through the
synaptic links. Every arti�cial neuron has the input
U and the output V . The output of the (i; j)-th
neuron is given by Vi;j = f(Ui;j) where f is called
the neuron's input/output function.
Our system is composed of an n� n neural net-

work array for an (n + 2)-gate assignment prob-
lem. The solution in Figure 2 (b) is provided by the
state of a 13�13 neural network array as shown in
Figure 3. Note that each square represents an out-
put state of the (i; j)-th neuron. The black squares
and the white squares show that the outputs of
the neurons generate 1's and 0's respectively. The
nonzero output of the (i; j)-th neuron means that
gate #i is assigned to column #j. Because of the
one-dimensional gate assignment constraint, that
is, because one and only one gate must be assigned
to each column, one and only one neuronmust gen-
erate a nonzero output per row and per column
in the n � n neural network array. To satisfy this
constraint, the two-dimensional maximum neuron
model is newly introduced. The input/output func-
tion of the neuron model is given by:

Step 1.

Va;b = 1 if Ua;b = maxfUi;jg;

Step 2.

Vc;d = 1 if Uc;d = maxfUi;j j i 6= a; j 6= bg;

Step 3.

Vc;d = 1 if Ue;f = maxfUi;j j i 6= a; c; j 6= b; dg;

...

Step n.

Vg;h = 1 if Ug;h = maxfUi;j j i 6= a; c; e; : : : ;

j 6= b; d; f; : : :g;

Vk;l = 0 otherwise, (1)

where Vi;j = 1 means that gate #i is embedded
in column #j. For example, gate #a should be as-
signed to column #b if Ua;b is the largest among all
Ui;j 's, and then gate #c should be assigned to col-
umn#d ifUc;d is the largest among allUi;j 's except
for gate #i = #a or column #j=#b, and so on.
Note that if more than one neuron has the largest
input, one neuron among them should be selected.
In n2 maximum neurons, n neurons always gener-
ate nonzero outputs and the other (n2�n) neurons
generate zero so that not more than one gate is as-
signed per column. This neuron model provides a
faster convergence speed and higher convergence
rate than those of the conventional McCulloch-
Pitts neuron or sigmoidal neuron models. The in-
put of the (i; j)-th neuron is determined by the fol-
lowing motion equation.
The motion equation represents the synaptic
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links. It shows interconnections between the (i; j)-
th neuron and other neurons. The general motion
equation of the (i; j)-th neuron is given by:

dUi;j

dt
= �

@E(V1;1; : : : ; Vi;j ; : : : ; Vn;n)

@Vi;j
: (2)

This means that the change of the input of the
(i; j)-th neuron is given by the partial deriva-
tives of the computational energy function E
with respect to the output of the (i; j)-th neu-
ron where E follows an (n � n)-variable function:
E(V1;1; : : : ; Vi;j ; : : : ; Vn;n). The motion equation is
used to update Ui;j . The goal of the arti�cial neu-
ral network for solving optimization problems is
to minimize the fabricated computational energy
function E in Eq. (2). The arti�cial neural network
also provides a parallel gradient descent method
to minimize the fabricated energy function E.
Usually the right term in Eq. (2) can be con-

structed by considering the necessary and su�cient
constraints and/or the cost function from the given
problem.The proposed two-dimensionalmaximum
neural network needs only the cost function which
is evaluated by the left-edge-�rst algorithm. The
motion equation for the one-dimensional gate as-
signment problem is assumed to be given by:

dUi;j

dt
= O �R; (3)

where O and R are the objective and the real num-
ber of tracks respectively. O is the expected num-
ber of tracks and set to be always less than R. R is
given by the left-edge-�rst algorithm under the as-
sumption that gate #i is allocated to column #j.
For example, to calculate dUi;j=dt of the (1,1)-th
neuron in Figure 2 (a), gate #1 is assigned to col-
umn #1 temporarily as shown in Figure 4 while
the permutation of all the gates except gate #1 is
the same, and then the left-edge-�rst algorithm is
applied. According to the left-edge-�rst algorithm,
the real number of tracks R is 9. If O = 7, then
dU1;1=dt = 7� 9 = �2. To calculate dU1;2=dt, the
assignment of gate#1 to column#2must be main-
tained because gate #1 has already been assigned
to column #2. Since R is 9 as shown in Figure 4
(a), dU1;2=dt = �2. Eq. (2) describes the degree
of penalty which discourages the highly penalized
neurons from generating a nonzero output.

PARALLEL ALGORITHM AND EXPER-

IMENTAL RESULTS

A simulator based on the proposed neural net-
work was developed and a synchronous parallel
system was simulated where all the outputs were
evaluated after all the inputs were updated. The
following procedure based on the �rst-order Euler
method was used. Note that tlimit is the maximum
number of iterations for the termination condition.
Step 0. Set t = 0, and setO and tlimit adequately.
Step 1. Assign uniformly randomized numbers to
the initial values of Ui;j(t) for i; j = 1; : : : ; n.

Step 2. Evaluate Vi;j(t) for i; j = 1; : : : ; n, using
Eq. (1).

Step 3. Compute Eq. (3) of the n�n neural net-
work for i; j = 1; : : : ; n based on the left-edge-
�rst algorithm to obtain �Ui;j(t):

�Ui;j(t) =
dUi;j

dt
: (4)

Step 4. If Vi;j(t) = 1 and �Ui;j(t) � 0 for i; j =
1; : : : ; n, then record the answer forO tracks, set
O = O � 1, and set a new tlimit bigger than the
previous tlimit.

Step 5. Update Ui;j(t + 1) for i; j = 1; : : : ; n,
based on the �rst-order Euler method:

Ui;j(t+ 1) = Ui;j(t) + �Ui;j(t): (5)

Step 6. Evaluate Vi;j(t + 1) for i; j = 1; : : : ; n,
using Eq. (1).

Step 7. If t = tlimit then terminate this procedure
else increment t by 1 and go to Step 3.
Note that the time complexity of the left-edge-

�rst algorithm in Step 3 is less than O(nr) where
r is the number of tracks with m processing ele-
ments (detectors) for m nets, and that the time
complexity of the two-dimensional maximum neu-
ral network in Steps 2 and 6 is less than O(n logn)
with (n2 + 1)=2 processing elements (compara-
tors) for n2 neurons. In Steps 3 through 5, each
process can run in parallel. Therefore, the time
complexity of the proposed algorithm is less than
max(O(nr); O(n logn)). The algorithm was im-
plemented on a Macintosh PowerBook 170 and an
HP 9000/710 computer, although the algorithm
is executable either on a sequential machine or a
parallel one.
In order to accelerate the simulation speed and

increase the convergence rate, the following Eq. (6)
was also used in Eq. (4) instead of Eq. (3) (Takefuji,
1992):
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(a) The net layout representation to calculate dU1;1=dt.

(b) The neural network array representation to calculate dU1;1=dt.

Figure 4 The explanation for the calculation of dU1;1=dt.

Table I The problems and the results

Problem # (Reference) The number of gates The number of nets The number of tracks
This work Reference

1 (Fujii, 1987) 9 8 4 4
2 (Hong, 1985) 15 18 7 7
3 (Hong, 1985) 29 37 13 13
4 (Hong, 1985) 48 48 11 13
5 (Yamada, 1989) 85 96 21 23
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Figure 5 One of the solutions for problem #4.

Figure 6 One of the solutions for problem #5.

Figure 7 Relationship between the convergence rate and the objective number of tracks.

If (t mod 10) < ! then
dUi;j

dt
= (O �R)Vi;j ;

else
dUi;j

dt
= O �R; (6)

where! = 4was used through our simulation. This
method helps the state of the system to escape
from the local minimum.
We have examined the �ve benchmark problems

to test our algorithm. Table 1 shows the problems
and the results. The results of the best existing al-

gorithms are also shown for comparison. Our algo-
rithm has discovered the improved solutions which
have the smaller numbers of tracks in both prob-
lems #4 and #5 over the best existing algorithms.
Figures 5 and 6 depict one of the improved solu-
tions for problems #4 and #5 respectively. These
solutions are able to substantiate the e�ectiveness
of our algorithm. Figure 7 shows the relationship
between the convergence rate and the objective
number of tracks for problem #4. Note that the re-
sult was obtained by 100 simulation runs over the
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objective number of tracks using di�erent initial
states. The average number of iteration steps and
tlimit are also shown in Figure 7. It depicts that our
algorithm found the answer of 13 tracks given by
(Hong, 1989) within 700 iteration steps with more
than 80% convergence rate and the answer of 11
tracks within 5000 iteration steps with about 25%
convergence rate.

CONCLUSION

In this paper we have proposed a near-optimal
parallel algorithm using two-dimensional max-
imum neural networks for the one-dimensional
gate assignment problems in VLSI layout design.
The proposed algorithm requires an n � n neural
network for an (n + 2)-gate assignment problem.
Our algorithm needs only one simple parameter
! compared to a simulated annealing which needs
several parameters (Hong, 1989) and does not
need any \good" initial gate-ordering. The simu-
lation results demonstrate the e�ectiveness of the
proposed algorithm over the existing algorithms
in several benchmark problems.
The proposed algorithm could be also expand-

able to other signi�cant VLSI layout problems:
gate matrix layout problems (Wing, 1985; Huang,
1989; Singh, 1992), extended version of the one-
dimensional gate assignment problems such as a
two-dimensional gate assignment problem (Xu,
1990), and PLA folding problems (Lussio, 1990).
In the gate matrix layout problems and the ex-
tended version of the one-dimensional gate assign-
ment problems, although the nets are connected
not only horizontally but also vertically, the net-
allocation solution could be provided by another
similar neural network instead of the left-edge-�rst
algorithm. In the PLA folding problems, espe-
cially the multiple folding problem is the same as
the one-dimensional gate assignment problem.

APPENDIX. THE LEFT-EDGE-FIRST

ALGORITHM

The following procedure is used for the left-edge-
�rst algorithm to pack the nets with the small-
est number of tracks within a given gate-ordering
without the nets overlapping each other. The proof
of this algorithm is given in (Hashimoto, 1971).
Step 0. Start the following procedure from the
�rst track.

Step 1. Find a net whose leftmost gate is located
in the leftmost column.

Step 2. If there is not the net, then continue �nd-
ing a net whose leftmost gate is located in the
next column until the net is found.

Step 3. Put the net on the track.
Step 4. Except for the allocated net(s), �nd a net
whose leftmost gate is located in the next col-
umn of the column the rightmost gate of the pre-
viously allocated net is located in.

Step 5. If there is not the net, then continue �nd-
ing a net whose leftmost gate is located in the
next column until the net is found.

Step 6. If there is not the net, then move down
to the next track and continue from Step 1 until
all the nets are allocated.
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