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Abstract

In this paper, we propose a new clustering method for the first phase of a two-phase method of the vehicle routing problems (VRPs) and the
traveling salesman problems (TSPs). In the first phase, the customers are grouped as several delivery areas for vehicle by using maximum
neuron model. In the second phase, the TSPs for each areas are solved by using elastic net model proposed by Andrew et al. Conventional
maximum neuron model proposed by Takefuji et al. is not suitable for these continuous problems. But by including a self-organization rule to
this model, the solution quality is improved. Our simulation results show that maximum neuron model can achieve to obtain better solutions
than other methods for some kinds of problems in VRPs and TSPs. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Vehicle routing problem; Maximum neuron model; Clustering problem; Elastic net

1. Introduction

The single depot vehicle routing problem (VRP) [6] is
one of the well-known optimization problems. The problem
is to minimize the total length of all routes for each vehicle
that has a restricted capacity and starts from the same depot.
This problem is widely applied to many real delivery
problems. Delivery and pickup operations are the situations
that this problem can be applied to. The collection of mail
from posts and the operation of school bus services are well-
known examples of pickup operations.

The VRP can be stated as follows: a set of L vehicles,
with same capacity Q, is located at depot D. Customer i is
located at X; in the two-dimensional map and has a demand
q;- Each vehicle, finding a route which begins at the depot,
visits a subset of customers and returns to the depot without
violating the capacity constraint. The objective is to mini-
mize the total length of all routes (see Fig. 1).

Due to the complexity of this problem, existing methods
are almost exclusively heuristic methods that find an
approximately optimal solution. Fisher and Jaikumar [7]
classifies the previously proposed heuristics to four types:

(i) tour building heuristics,

(i1) tour improvement heuristics,

(iii) two-phase methods, and

(iv) incomplete optimization methods.
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The tour building heuristics are based on the Clarke and
Wright method [4]. These methods begin with an infeasible
solution in which every customer is assigned to a separate
vehicle. In iterative steps, link is combined until capacity
constraints are not violated. The choice of a link is
motivated by a measure of cost savings. Gaskell [8] and
Yellow [19] proposed modified methods of Clarke and
Wright method that use modified savings.

In the tour improvement heuristics, the solution begins
with a feasible vehicle schedule. By exchanging links, the
cost is reduced without violating constraints. These
heuristics are based on the Lin [11] and Lin—Kernighan
[12] method for the traveling salesman problem (TSP),
and Christofides and Eilon [2] and Russell [14] have
modified these heuristics for the VRP.

In the two-phase method, customers are first assigned to
vehicles before deciding the sequences. In phase two, routes
are obtained for each vehicle by solving a TSP. Tyagi [17],
Gillett and Miller [9], Fisher and Jaikumar [7] and Christo-
fides et al. [3] proposed two-phase methods. These methods
are different for the costs that were used in phase one. The
methods in Refs. [9,17] use the distance between customers
as cost. In Ref. [17], customers are assigned sequentially to
a vehicle using a nearest neighbor rule. Gillett and Miller
use a ‘sweep’ algorithm for phase one. A customer is chosen
at random and the ray from the central depot through the
customer is swept either clockwise or counter-clockwise.
Fisher and Jaikumar [7] formulated nonlinear generalized
assignment problem, and introduced approximated delivery
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Fig. 1. Vehicle routing problem.

cost. Fisher and Jaikumar method is based on a Lagrangian
relaxation in which the multipliers are determined by a
multiplier adjustment method described in Ref. [7].

In addition to these four types classified by Fisher [7], a
topological approach exists. Elastic net algorithm for
solving the VRP proposed in Ref. [18] is based on elastic
nets for TSP [5,15]. Durbin and Wilshaw [5] and Simmen
[15] indicate that this topological approach can obtain good
solution for small size TSPs. However, as this method is a
one phase strategy, it is difficult to obtain the best solution
for VRPs and large scale TSPs in realistic computational
time.

This paper proposes a new clustering method to use as the
first phase in the topological approach for the simplification
of the problem. This approach is regarded as a two-phase
method. In the first phase, the routing costs are approxi-
mated for each customer as distances from the main route
that is mainly traced by each vehicle. This assignment
problem is solved by a framework of clustering algorithm
that uses maximum neuron model proposed by Takefuji et
al. [16]. Takefuji et al. [16] indicates maximum neuron
model can solve several kinds of discrete optimization
problems efficiently. Amartur et al. [1] shows the model
can also apply the segmentation problem of magnetic reso-
nance images. As pointed out in Oka et al. [13], while the
model has an advantage of fast convergence, the quality of
the solution for the clustering problem is inferior to the
Kohonen model proposed by Kohonen [10]. Oka et al.
solved this problem by using Kohonen model after using
maximum neuron model. In the maximum neuron model
phase, an approximate optimum solution can be searched
quickly and in the Kohonen model phase, a more precise
solution based on the solution of the previous phase can be
searched. In this paper, it becomes possible to search a
solution continuously by including the self-organization
rule to maximum neuron model. Our results show the
qualities of the solutions are improved from the conven-
tional maximum neuron model. Apart from the distance

minimization clustering problem, this model can also be
applied to the cost minimization problem that imposed
several constraints like VRP or TSP. Our simulation results
also show that our two-phase method for VRPs and TSPs
are not inferior to the other conventional models. Compar-
ing Vakhutinsky and Golden [18], Clarke and Wright [4],
Christofides and Eilon [2] and Christofides et al. [3], our
method could obtain the best solution for two kinds of VRPs
in our simulation. Comparing Vakhutinsky and Golden [18],
our method could obtain better solution for large scale TSPs.

2. Clustering algorithm
2.1. Strategy of this method

In the first phase, delivery costs should be decided before
delivery route is settled. In the clustering algorithm, the
costs are approximated as distances from feature lines.
The strategy is based on the assumptions that if the vehicle
can go and be back along a straight line ideally, it is the most
efficient for each driver. In the real distribution of the
customers, linear arrangements of the customers can be
found for saving costs. Therefore, the clustering problem
can be regarded as a self-organization problem to find
feature lines from the map.

2.2. Approximation of costs

A cost ¢;; for assigning vehicle j to the customer i can be
defined as the distance from the main route of vehicle j to
the customer i.

¢; can be described as follows:

{|N,-j - X,| if M, —D)X; — D) >0

Cjj . 6]
IM; — X;| otherwise

where M; is the representative point of the customers visited
by vehicle j, and Ny is the foot of the perpendicular from X;
of the line R; that passes D and M, which is called main
route. ¢; is the distance from the customer to the main route
if the customer locates the side of the representative point or
the distance from the customer to representative point
otherwise (see Fig. 2). V;; means whether vehicle j visits
customer i. V;; takes 1 if vehicle j visits customer i otherwise

Nij

(a) (b)

Fig. 2. A cost for visiting city i by vehicle j (a) when X; locates the side of
M;, and (b) otherwise.
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V,; takes 0. By the definition of the VRPs that each customer
must be visited only once and that each vehicle have the
same capacity constraint, V;; is subject to Egs. (2) and (3):

dv=1 )
J

DVigi<Q Y 3)

The total cost can be described as follows:

IPRNT )
J i

2.3. Neural network dynamics

An approximate optimal solution of Vis selected by using
maximum neuron model. To satisfy Eq. (2) constantly, V;; is
defined by Eq. (5):

{ 1 if Uy = max{U}{a=1,...,L)

®)

0 otherwise

U, which is set as random numbers initially, is updated by
Eq. (6):

du;
dUl“ num
T B(Z Vojda = Q) ™
a=1

a is the coefficient of the cost c¢;, B, the coefficient of the
constraint of capacity of a vehicle and num denotes the
number of the customers. a tends to O gradually while
the calculation continues (see Eq. (8)):

a(new) = a(old) — a(l%tlal) (8)
T is the frequency for updating the parameters. The repre-
sentative points are changed discretely in the conventional
maximum neuron model, but they are updated continuously
by using self-organization rule in our model. The represen-
tative point of the customers for vehicle j M, is initialized by
Eq. (9) and updated by Eq. (10).

num

Z Xa Vaj

Mj(initial) = “~—— ©)

num

DV
a=1

num

Z Xa Vaj

a=1
M;(new) = M(old) + y§ ————

num

S

where 7 is the learning parameter of M;, and y towards O as

— M;(old) (10)
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Fig. 3. The movement of a representative point. The representative point,
M, moves toward the real gravity point, G, gradually.

the calculation continues using the following calculation:

Ynew) = y(old) — w (11)
A continuous movement of the representative point is
shown in Fig. 3. The representative point moves toward
the real gravity point gradually. V;;, U; and M; are updated
until V satisfies Eq. (3) and the total cost change equals zero,
or the number of iterations reaches the constant steps.

2.4. Extension for TSP

The algorithm proposed can be applied to TSPs by modu-
lating following points: (1) D is set to the central point of
customers; (2) 8, which is the coefficient of the constraint of
capacity of a vehicle, is set to 0; (3) after solving each TSPs,
the clusters are ordered by solving another TSP whose cities
are in accordance with the center points of each cluster (see
Fig. 4); and (4) the final solution excludes the depot and
connects each route through customers in the order decided
in step 3.

Fig. 4. Decision of the order of the clusters by solving TSPs.
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Table 1
Comparison with the conventional maximum neuron model
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Problem Number of cities Total distance Number of vehicles
Proposed MNM Conventional MNM Proposed MNM Conventional MNM
eil51 50 521 529 5 5
eilA76 75 898 914 10 11
eilA101 100 853 861 8 8
problem4 150 1081 1082 12 12

3. Solving small TSPs
3.1. Elastic nets

In the second phase, small TSPs are solved for the
customers assigned to each vehicle by using elastic net
[5]. The elastic net is initially set as a small loop, and it is
stretched towards the customers with elastic forces like a
rubber band. Let x;; denote the location of the ith customer
assigned to the jth vehicle, and yj; the location of the kth
element of jth elastic net. These elements are called beads.
The location of each bead is updated by Eq. (12).

@ Z Wit = Vi) T K1 — 29 T ye-1) (12)
t

where w; denotes the connection weight of x; and y;, K
denotes the parameter which tends to 0 during the calcula-
tion. The connection weight is calculated by using Eq. (13).

i = s =3l O (13)
Z d(x; — vyl K)
)
where
(d, k) = e T (14)

Egs. (12)—(14) indicate that the nearer bead from the ith
customer is preferred to move toward the customer having
the gravities of left and right beads. The calculation is
continued until the network is converged.

4. Simulation
4.1. Results for VRPs

We approached eil51, eilA76, eilA101 and problem4 in
TSPLIB, which are open problems. Sizes of the problems
are 50, 75, 100 and 150, respectively. A typical simulation
result of each problem is seen in Fig. 5. In Fig. 5(a), each
line which connects the depot and each center point shows
the main route for each vehicle. In Fig. 5(b)—(d), the line
which shows the main routes are left out. Each loop that
begins from the depot and returns to the depot shows each
delivery route for the assigned vehicle. In the case shown in
Fig. 5(a), it converges in 299 steps and it needs five vehicles

whose total cost is 522. In the case shown in Fig. 5(b), it
converges in 300 steps and it needs 10 vehicles whose total
cost is 898. In the case shown in Fig. 5(c), it converges in
300 steps and it needs eight vehicles whose total cost is 862.
In the case shown in Fig. 5(d), it converges in 300 steps and
it needs 12 vehicles whose total cost is 1099. While each
problem has different sizes, the iterative steps for the
convergences are almost the same.

We compared the results of proposed model with that of
conventional maximum neuron model. Table 1 shows the
comparisons of costs and number of the vehicles for the best
solutions for eil51, eilA76, eilA101 and problem4. The
proposed model improves the solution precision for all
kinds of problems. Especially for eilA76, the number of
vehicles for our model’s solution is fewer than that for
conventional model’s solution. To minimize the total cost
for delivery, it needs to deliver in minimum number of
vehicles, but in the conventional model solution, it is not
delivered in the minimum number of vehicles. Although it is
shown that the proposed model could obtain better solution
than conventional model could for most of the results, the
result for problem4 is almost the same. As shown in
Fig. 5(d), the distribution of each cluster is small. For
those small distributions, the self-organization rule is not
so efficient. For the large distribution, for example eil51,
eilA76 and eilA101, the self-organization rule is efficient
to obtain precise solutions.

We also compared the maximum neuron model’s
solutions with the known best solutions (see Table 2). We
compare with elastic net [18] (topological approach) and the
savings approach [4] (tour building heuristics), three-
optimal method [2] (tour improvement heuristics) and
two-phase method [3] (two-phase method). The best
solutions of maximum neuron model for €il51 is 521, for
eilA76 is 898, for eilA101 is 853 and for problem4 is 1081.
The solutions for eil51 and problem4 are the best of all the
other methods.

4.2. Results for TSPs

We approached eil101 and a280 of TSP in TSPLIB for
our simulation. Each number of the cities is 101 and 280,
respectively. The simulation results of these problems are
seen in Fig. 6. The best results for our simulation of eil101 is
710 and that of a280 is 3289. Fig. 7 shows the results for
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(©)

Fig. 5. (a)-(d) Show simulation results of eil51, eilA76, eilA101 and problem4, respectively. (a) a=0.02, 8=0.3, y=0.03, step =299,
number of vehicles = 5, total distance = 522. (b) @ = 0.01, B = 0.08, y = 0.03, step = 300, number of vehicles = 10, total distance = 898. (c) @ = 0.02,
B=0.3, y=0.03, step = 300, number of vehicles = 8, total distance = 862. (d) a = 0.04, 8= 0.15, y=0.03, step = 300, number of vehicles = 12,
total distance = 1099.

eil101 and a280 by using one phased elastic net approach. extraction problems. In Fig. 5, all of the final clusters have
The total distances for eill01 is726 and that for a280 is common features that are like long thin ovals. These
3593. common features are caused from the self-organization

algorithm that searches liner features in the area. In eil51,
eill01 and problem4, our model is proper to the distribu-

5. Discussion tions of the customers. It is shown in Fig. 5(a), (c¢) and (d)

that the long thin clusters does not cross each other. The

In our method, the VRPs are solved as a kind of feature comparison of the results shows that our model can obtain
Table 2

Comparison with the other models (method A: proposed maximum neuron model; B: elastic net (Vakhutinsky and Golden) [18]; C: the savings approach
(Clarke and Wright) [4]; D: three-optimal method (Christofides and Eilon) [2]; and E: two-phase method (Christofides et al.) [3])

Problem Number of cities Total distance Number of vehicles

A B C D E A B C D E
eil51 50 521 560 585 556 550 5 6 6 5 -
eilA76 75 898 - 900 876 883 10 - 10 10 -

eilA101 100 853 - 887 863 851 8 - 8 8 -
problem4 150 1081 - 1204 - 1093 12 - - - -
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(a)

(b)

Fig. 6. (a) and (b) Show simulation results of eill01 and a280, respectively. (a) @ =0.02, 8=0, y=0.03, step =499, number of clusters = 6,
total distance = 710. (b) @ = 0.02, B =0, y = 0.03, step = 499, number of clusters = 4, total distance = 3289.

the best or the second best solution for these problems. For
the solution of eil51, our model takes fewer vehicles than
that of elastic net model does, and takes 7% shorter distance
than elastic does. Comparing with the elastic net model, by
separating VRP into two problems, our method improves
the accuracy of obtaining a better solution, and it can adapt
to increase of customers. However, in 75 customers’
problems, our simulation result does not show the best
solution compared to the others. Fig. 5(b) shows that the
routes of the vehicles overlap each other, and our method is
difficult to obtain the best solution for this pattern. This
overlapping solution pattern is because the capacity
constraint of each vehicle is difficult to satisfy. In this
case, it is difficult to obtain a good solution because the
constraint and the cost function are violated. However,
this case rarely happens in the real delivery problems
because the demands of the customers are usually very
small for the vehicle capacity. Therefore capacity constraint

i
\

has a small weight compared to the delivery cost. By using
maximum neuron model, our method obtained best or
second best solutions for many problems that are similar
to real delivering problems. Also, the experimental results
show that the iterative step does not increase if the number
of customers increases (see Fig. 5). If this model can be
simulated by parallel processors, it can find solutions in
O(1) of computational time.

We also show that the proposed method can obtain better
solutions for large-scale TSPs than elastic nets can. Although
the sufficient condition whether the solution obtained is the
best or not cannot be checked without investing all routes, but
the necessary condition for the best solution can be checked if
the tour has no crossing routes. The simulation results show
that we can obtain approximated optimum tours with few
crossing routes. That is because the proposed algorithm
avoids making a crossing route. However, the problem of
how to decide the number of clusters L still remains.

A

< A
AR

-y

e
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Fig. 7. (a) and (b) Show simulation results of eil101 and a280 by using elastic net, respectively. (a) Total distance = 726. (b) Total distance = 3593.
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In this paper, we extend the conventional maximum
neuron model to apply topological problems. The compar-
ison of conventional model and our new maximum neuron
model shows that quality of the solutions are improved. This
extension means that the ability of the maximum neuron
model that can solve discrete problems efficiently and the
ability of the self-organization method that can solve contin-
uous problems precisely are well harmonized in one model.
Cost minimization problems imposed several constraints
which could not be solved by using Kohonen model only,
but they could be solved by using our model because of the
ability of neuron model in solving combinatorial optimiza-
tion problems. This new clustering method can be applied
not only for these delivery problems but also for other
topological problems like image segmentation problems
that have some constraints.

6. Conclusion

This paper proposed a new clustering method that is
based on maximum neuron model. By extending the
conventional maximum neuron model, our model can be
applied to continuous problems that imposed several
constraints like VRPs or TSPs. Our simulation results
show that our new clustering model can be used in the
first phase of the two-phase approach for VRPs and TSPs
and can solve the problems efficiently in terms of the quality
of the solutions and the computational time. This extension
leads to the area of the problems that maximum neuron
model can solve differently.
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