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A B S T R A C T

Maliwan et al. (2025) identified key parameters in microplastic ultrafiltration using interpretable machine 
learning (SHAP), attributing 57.6-70.6 % feature importance to factors like transmembrane pressure. This paper 
critically examines their methodological approach, highlighting significant concerns regarding SHAP’s appli
cation. SHAP values are inherently model-dependent and lack ground truth for validating feature importance 
accuracy, leading to potentially biased and erroneous conclusions; high prediction accuracy does not ensure 
reliable insights. SHAP’s underlying assumptions, particularly feature independence, rarely hold in complex 
environmental systems characterized by multicollinearity, potentially misattributing variable importance. We 
advocate for a more robust analytical framework incorporating unsupervised machine learning (e.g., feature 
agglomeration) and nonlinear nonparametric statistical methods (e.g., Spearman’s correlation) to provide more 
reliable insights into variable relationships, moving beyond model-dependent interpretations.

Maliwan et al. (2025) conducted a comprehensive study on the 
removal and release of microplastics through point-of-use ultrafiltration 
membranes. The research encompassed a year-long monitoring period 
and leveraged interpretable machine learning techniques to bolster its 
findings. Utilizing SHapley Additive exPlanations (SHAP), the authors 
identified several key filtration parameters—specifically, trans
membrane pressure (TMP), filtration volume, permeability, and total 
resistance. These parameters collectively accounted for 57.6 % to 70.6 % 
of the feature importance in predicting microplastic (MP) concentration 
in the membrane permeate. Furthermore, their study proposed a diverse 
array of predictive models, including multiple linear regression (MLR), 
Ridge regression, Lasso regression, Bayesian regression, k-nearest 
neighbors (kNN), support vector machine (SVM), decision tree (DT), 
random forest (RF), extreme gradient boosting (XGB), and artificial 
neural networks (ANN) (Maliwan et al., 2025).

This paper strengthens the link to environmental and membrane 
filtration practice by emphasizing that accurate identification of the 
most influential features is essential for optimal membrane design and 
operation, particularly for key parameters such as transmembrane 
pressure (TMP), filtration volume, permeability, and total resistance. 
Although membrane filtration parameters were more significant than 
water quality and feed microplastics in categorical comparison, the 
establishment of setpoints, fouling control strategies, and performance 
targets in these applications depends on accurate parameter ranking and 

interpretation. Unreliable feature rankings may cause designers to 
incorrectly prioritize transmembrane pressure, volume, permeability, 
and resistance, thereby compromising optimal operating conditions and 
design decisions.

The fundamental challenge in feature importance analysis lies in the 
absence of definitive ground truth, rendering feature importance cal
culations from supervised models—whether enhanced by SHAP or 
not—inherently susceptible to bias. Maliwan et al. premise their eval
uation on R-squared values as a proxy for prediction accuracy, operating 
under the assumption that higher predictive performance indicates su
perior feature selection. However, this approach conflates two distinct 
analytical objectives: predictive accuracy and feature importance reli
ability. A model may achieve impressive predictive performance while 
still misattributing importance to features based on spurious correla
tions or complex interactions rather than fundamental relationships. 
This disconnect highlights the critical need to evaluate feature impor
tance methodologies through multiple complementary lenses rather 
than relying exclusively on predictive performance metrics, particularly 
when the goal extends beyond prediction to understanding underlying 
data relationships.

This paper raises significant theoretical and empirical concerns 
regarding the use of supervised machine learning models alongside 
SHAP, primarily due to the model-specific nature of SHAP in
terpretations, which can lead to erroneous conclusions. While 
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supervised machine learning models provide ground truth values that 
enable validation of target prediction accuracy, the feature importances 
derived from these models lack corresponding ground truth for their 
own accuracy validation. This absence of ground truth complicates the 
determination of true associations between variables, resulting in 
different models yielding distinct feature importances. Consequently, 
this can lead to biased feature importances. Importantly, high target 
prediction accuracy does not necessarily correlate with reliable feature 
importances, as the feature importances generated by models are 
inherently biased and can result in skewed interpretations (Fisher et al., 
2019; Nazer et al., 2023; Ugirumurera et al., 2024; Alaimo Di Loro et al., 
2023; Adler and Painsky, 2022; Steiner and Kim, 2016). Over 300 
peer-reviewed articles have documented this non-negligible bias in 
feature importances derived from machine learning models.

While this paper acknowledges that SHAP is a powerful explanatory 
tool with robust methodologies that faithfully capture nonmonotonic 
relationships between variables within a given model, this paper spe
cifically addresses a critical limitation: SHAP must ultimately rely on 
feature importances derived from supervised machine learning models, 
which themselves can be unreliable. It’s important to distinguish be
tween a model’s two types of accuracy: target prediction accuracy and 
feature importance reliability. The former can be validated against 
known labels, while the latter lacks ground truth for validation. This 
paper does not dismiss SHAP’s utility and mathematical strengths, but 
rather cautions against exclusively relying on it when the underlying 
model may prioritize prediction accuracy over accurate feature impor
tance representation. A more balanced approach would combine SHAP’s 
explanatory power with additional validation methods to ensure feature 
importances reflect true causal relationships in the data.

The implementation of `explain=SHAP(model)` represents a funda
mental methodological limitation, as SHAP values are inherently model- 
dependent interpretations rather than objective measures of variable 
relationships. This dependency dictates that SHAP exclusively relies on 
the given model’s architecture and assumptions, inevitably inheriting 
and potentially amplifying any biases already present in the model’s 
feature importance calculations (Wu, 2025; Bilodeau et al., 2024; Huang 
and Marques-Silva, 2024; Kumar et al., 2021; Hooshyar and Yang, 2024; 
Lones, 2024; Molnar et al., 2022; Létoffé et al., 2025). Importantly, 
SHAP’s mathematical underpinnings, founded on cooperative game 
theory principles, assume that features operate independently—a crit
ical prerequisite rarely met in complex environmental systems where 
multicollinearity is common. This can lead to misleading attribution of 
importance to correlated variables. Furthermore, the absence of a reli
able mechanism for accurately calculating true associations between 
variables poses a significant methodological challenge, preventing 
definitive verification of whether SHAP-derived insights reflect genuine 
physical processes or are merely statistical artifacts.

The expression explain = SHAP(model) indicates that SHAP operates 
by analyzing a specific trained model rather than functioning indepen
dently. SHAP generates explanations by calculating feature importance 
values derived directly from the model’s structure and predictions. This 
makes SHAP fundamentally model-dependent, as its explanations reflect 
the particular relationships and patterns captured by the given model 
rather than operating from external assumptions or predefined feature 
relationships. The explanations therefore inherit both the strengths and 
limitations of the underlying model they interpret

The field currently lacks definitive methodologies for determining 
true causal relationships between variables, with existing supervised 
models primarily quantifying predictive contribution rather than 
uncovering genuine causal mechanisms. This paper proposes integrating 
unsupervised modeling approaches alongside traditional methods, 
leveraging their potential to reduce the inherent bias of label-driven 
analysis by identifying patterns without the constraint of predefined 
outcomes. This hybrid approach offers a more comprehensive analytical 
framework while preserving the integrity of established techniques like 
SHAP. Importantly, the unsupervised components serve as 

complementary tools rather than replacements, enriching rather than 
disrupting existing interpretability frameworks. However, substantial 
empirical validation remains necessary to establish the reliability, 
interpretability, and comparative advantages of feature importance 
measures across both supervised and unsupervised paradigms, particu
larly for identifying meaningful relationships in complex datasets.

To overcome these significant limitations, this paper advocates for a 
more comprehensive analytical framework. This framework in
corporates unsupervised machine learning approaches such as feature 
agglomeration (FA) (to identify natural groupings of related variables) 
and highly variable gene selection techniques (HVGS) (adapted from 
genomics to identify truly influential parameters). These should be 
complemented by nonlinear nonparametric statistical methods like 
Spearman’s correlation, which can capture complex monotonic re
lationships with robust p-value assessments, without imposing distri
butional assumptions. This multifaceted approach would provide more 
robust evidence of variable relationships than relying solely on SHAP 
(model) interpretations, especially in complex environmental systems 
where mechanistic understanding remains paramount.

Stability in feature ranking is critical for establishing reliable feature 
importance analysis across diverse analytical contexts. When evaluating 
this stability through progressive removal of top-ranked features among 
full features, supervised models frequently demonstrate inconsistent 
ranking patterns—a vulnerability stemming from their model-specific 
architectures and their focus on predictive contribution rather than 
capturing fundamental relationships within data. In contrast, unsuper
vised approaches such as FA, HVGS, and Spearman correlation 
demonstrate remarkable ranking stability across iterative feature 
removal scenarios. This stability advantage emerges from their focus on 
inherent data structures rather than optimizing for specific prediction 
tasks, suggesting these methods may more faithfully reflect genuine 
underlying variable associations rather than model-specific predictive 
utility. This distinction becomes particularly valuable when seeking 
robust feature importance metrics that remain consistent despite 
changes in feature composition.

This paper proposes a novel pipeline framework that integrates un
supervised models with non-target supervised Spearman’s correlation to 
enhance SHAP approaches. The complete Python implementation is 
publicly accessible at GitHub (GitHub, 2025a, 2025b). The code re
pository provides robust solutions for feature importance analysis of 
omics data from The Cancer Genome Atlas (TCGA) (GitHub, 2025a) 
comprising 705 samples and 1936 features, and for MNIST data with 70, 
000 samples and 784 features (GitHub, 2025b). These datasets are 
comprehensively analyzed through diverse methodologies—supervised, 
unsupervised, and non-target supervised models—while ensuring the 
proposed methods complement rather than interfere with established 
SHAP approaches.Feature importance calculations should be performed 
on raw data rather than scaled, normalized, or transformed values to 
prevent artifactual results that misrepresent natural relationships in the 
data. While techniques like hyperparameter tuning effectively enhance 
predictive accuracy, they may inadvertently distort feature importance 
interpretations by optimizing for prediction at the expense of inter
pretability. Notably, unsupervised approaches and non-target super
vised statistical methods such as Spearman’s correlation offer 
computational efficiency advantages, as they directly measure re
lationships within the data without requiring the intensive training 
procedures associated with complex predictive models. This balance 
between interpretability and computational demands is particularly 
valuable when feature importance, rather than prediction, is the pri
mary analytical goal.

Feature importance calculations should be performed on raw data 
rather than scaled, normalized, or transformed values to prevent arti
factual results that misrepresent natural relationships in the data. 
Spearman’s rank correlation effectively handles outliers while preser
ving the natural ordering of raw data values through ranking - a process 
distinct from scaling or normalization as it maintains relative 
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relationships without altering the data’s distribution characteristics. 
Similarly, feature agglomeration can be implemented without prior 
scaling or transformation by using the fit method rather than fit_trans
form, allowing clusters to form based on inherent data structures. Both 
methods can thus respect the original data’s relationships while miti
gating the distortions that arbitrary scaling or normalization might 
introduce to feature importance calculations.

While techniques like hyperparameter tuning effectively enhance 
predictive accuracy, they may inadvertently distort feature importance 
interpretations by optimizing for prediction at the expense of inter
pretability. Notably, unsupervised approaches and non-target super
vised statistical methods such as Spearman’s correlation offer 
computational efficiency advantages, as they directly measure re
lationships within the data without requiring the intensive training 
procedures associated with complex predictive models. This balance 
between interpretability and computational demands is particularly 
valuable when feature importance, rather than prediction, is the pri
mary analytical goal.

Superior predictive performance does not necessarily translate to 
reliable feature importance attribution, highlighting a critical discon
nect in current interpretability approaches. This paper addresses this 
gap by proposing a complementary framework that enhances traditional 
SHAP-based and supervised model interpretations with unsupervised 
analytical techniques. While the unsupervised modeling landscape is 
diverse—offering numerous methodological options with distinct theo
retical foundations and practical implications—this work establishes a 
foundation for their integration into feature importance analysis. Future 
research should systematically evaluate these varied unsupervised ap
proaches across different data domains and complexity levels to deter
mine their relative effectiveness in feature selection and importance 
attribution. This evaluation would ideally include stability analysis, 
cross-validation across diverse datasets, and comparison with ground 
truth in controlled scenarios where such truth is available, ultimately 
advancing toward more robust and trustworthy feature importance 
frameworks.
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