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A B S T R A C T

SHapley Additive Explanations (SHAP) are widely used to interpret machine learning models in agriculture and 
environmental decision-making, but SHAP inherits model misspecification, confounding, and distribution shift, 
risking unstable and policy-misleading importance rankings. This opinion advances a concrete, model-agnostic 
workflow that goes beyond SHAP: pair unsupervised structure checks (e.g., feature agglomeration, highly var
iable feature selection) with nonlinear, nonparametric association metrics and pre-registered sensitivity/stability 
analyses, then audit attributions with domain-informed negative controls and decision impact tests. The novelty 
lies in reframing SHAP from a standalone explainer to one component of a robustness protocol explicitly 
designed to reduce label-driven and proxy bias. This integrated approach yields more reliable variable impor
tance, tighter uncertainty communication, and clearer links between attribution changes and real policy choices.

In 2025, Computers and Electronics in Agriculture reported that 48 
of its published articles employed SHapley Additive Explanations 
(SHAP) to interpret machine-learning models—up sharply from 25 in 
2024 and just 8 in 2023—highlighting the journal’s accelerating interest 
in transparent, data-driven insights for agricultural challenges. Inter
pretable machine learning here means not only achieving high predic
tive accuracy but also understanding which input factors—such as land- 
use density, traffic volume or ambient temperature—drive the model’s 
forecasts. SHAP adapts the Shapley value concept from cooperative 
game theory by treating each feature as a “player” in the prediction 
“game” and allocating credit in proportion to its average marginal 
contribution across all possible feature coalitions. Because Shapley 
values satisfy properties like additivity (ensuring that the sum of indi
vidual contributions equals the difference between a model’s output and 
a baseline expectation) and symmetry (guaranteeing that interchange
able features receive equal attribution), SHAP provides a principled, 
mathematically grounded way to open the so-called “black box.” By 
doing so, it helps researchers strike a balance between model perfor
mance and substantive insight into urban systems.

Building on this momentum, Li et al. (2025) conducted an investi
gation into the impact of stand structure on forest net primary produc
tivity by employing a comprehensive integrated approach that combines 
multiple machine learning models with SHAP (SHapley Additive ex
Planations) and Dynamic Structural Equation Modeling (DSEM). SHAP 
effectively identifies key variables and quantifies not only their 

significance but also the direction and magnitude of their impact. This 
study synergistically merges various machine learning feature selection 
techniques with SHAP to assess the relative importance of different 
stand structure factors on forest Net Primary Productivity (NPP), 
providing a nuanced understanding of their influence.

While supervised machine learning models like DSEM are adept at 
identifying patterns and achieving strong predictive performance on 
unseen data, the feature importance scores they produce—whether 
based on split gains, permutation drops, or SHAP values—lack intrinsic 
verifiability against an external “ground truth.” In predictive tasks, we 
can validate accuracy by comparing forecasts with actual outcomes, but 
no equivalent standard exists to unequivocally establish the real-world 
significance of each input variable. As a result, high predictive accu
racy does not necessarily ensure that the importance rankings are 
dependable or unbiased (Parr et al., 2024; Watson & Wright, 2021; 
Molnar et al., 2022; Lipton, 2018; Fisher, Rudin, & Dominici, 2019; 
Lenhof et al., 2024; Mandler & Weigand, 2024; Potharlanka et al., 2024; 
Wood et al., 2024). For example, features that correlate strongly with 
the target variable but lack causal influence can still receive dispro
portionately high importance scores. Additionally, the interplay among 
features can lead to ambiguous credit-sharing, complicating the assess
ment of their individual contributions. Various model parameters—such 
as tree depth, learning rate, and random seed—can also exert substantial 
influence on importance weights. Therefore, practitioners must recog
nize that feature importance reflects the model’s internal logic rather 
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than serving as an objective measure of each variable’s scientific or 
policy significance. Furthermore, given the linear parametric nature of 
DSEM, the resulting feature importances and other metric scores may be 
significantly distorted when applied to nonlinear or nonparametric data 
contexts, leading to skewed interpretations.

Despite SHAP’s rigorous game-theoretic underpinnings and its 
adherence to fairness axioms, its attributions remain tied exclusively to 
the chosen model and data sample. There is no independent ground 
truth for “true” feature importance; SHAP values quantify marginal 
contributions to the model’s predictions, not bona fide causal or asso
ciative strengths in the system under study. Consequently, importance 
scores can be unstable: small changes in data splitting, sampling stra
tegies, hyperparameter configurations or even the random seed may 
produce materially different rankings. Correlated features can divide or 
inflate credit arbitrarily, imbalanced data can skew allocations toward 
dominant classes, and overfitting can embed spurious patterns that 
SHAP dutifully explains. In practice, therefore, SHAP outputs should be 
treated as hypothesis generators rather than definitive answers. To build 
confidence in the insights derived, researchers must perform robustness 
checks such as sensitivity analyses, cross-model comparisons, domain- 
expert vetting and, where appropriate, formal causal inference 
methods before translating SHAP attributions into policy decisions.

The SHAP explanatory wrapper (e.g., explain=SHAP(model)) oper
ates by querying the fitted DSEM model to estimate each feature’s 
contribution to individual predictions. Because SHAP values are 
computed using the same conditional expectations and structural in
sights that DSEM has learned, any systematic distortions in feature 
splitting, sample weighting, or interaction handling will be carried 
through and, in some cases, magnified in the resulting importance scores 
(Bilodeau et al., 2024; Hooshyar & Yang, 2024; Huang & Marques-Silva, 
2024; Kumar et al., 2021; Létoffé et al., 2025; Lones, 2024; Molnar et al., 
2022; Wu, 2025). For instance, if a DSEM model inadvertently overfits a 
spurious interaction between two correlated predictors, SHAP will 
assign both features credit for that relationship, despite the possibility 
that this interaction lacks grounding in the underlying data-generating 
process. As a result, SHAP inherits the model’s inductive biases—such 
as preferences for certain types of splits, heuristics for handling missing 
values, and various regularization settings—and presents them as “ex
planations.” Therefore, it is essential to interpret SHAP attributions with 
an awareness of the DSEM model’s known strengths and limitations.

To mitigate reliance on a single supervised model’s internal logic and 
thereby move closer to uncovering true associations rather than artifacts 
of a particular predictive algorithm, this paper advocates a two-stage, 
model-agnostic pipeline. First, we apply unsupervised techniques such 
as feature agglomeration (which groups variables by similarity in high- 
dimensional space) and highly variable gene selection (which retains 
only those features exhibiting the greatest dispersion across samples). 
These methods reduce dimensionality and filter out noisy or redundant 
variables without referencing the outcome of interest. In the second 
stage, we compute pairwise Spearman rank correlations, together with 
their associated p-values, to capture nonlinear, monotonic relationships 
and to formally test their statistical significance. By combining a data- 
driven feature-reduction step with a robust, nonparametric association 
metric, we aim to generate hypotheses about genuine variable in
terdependencies that do not depend on the potentially biased mechanics 
of any single supervised learner.

There are substantial differences between the approaches proposed 
in this paper and the Li et al.’s pipeline (2025) that combines SHAP with 
a Dynamic Structural Equation Model (DSEM) to capture temporal 
variation. Li et al.’s pipeline remains fundamentally supervised—despite 
ensembling multiple machine learning models with SHAP—while DSEM 
is a linear, parametric framework. When the linearity and distributional 
assumptions of DSEM are violated by the nonlinear, nonparametric 
nature of real-world data, downstream metrics (including explained 
variance) can be distorted. Moreover, applying SHAP across multiple 
supervised models (for example, explain = SHAP(model) for model-1, 

model-2, …, model-n ) can propagate and even amplify biases in 
feature importance if those models share misspecification or label 
leakage.

By contrast, the proposed method emphasizes unsupervised com
ponents—such as feature agglomeration and highly variable gene 
selection—that avoid label-driven bias and can outperform supervised 
methods when labels are unreliable or absent. These are complemented 
by non-target, supervised, nonlinear, and nonparametric diagnostics, 
such as Spearman’s rank correlation with p-values, to provide robust
ness without imposing restrictive parametric assumptions.

The growing adoption of SHAP in agricultural studies reflects an 
urgent need for interpretable machine learning models capable of 
generating insights that inform sustainable practices. By effectively 
allocating credit to each feature based on its marginal contribution, 
SHAP transforms black-box predictors into transparent tools that enable 
researchers to draw meaningful connections between factors such as 
stand density and species composition and their influence on forest 
productivity forecasts. However, the integration of SHAP with Dynamic 
Structural Equation Modeling (DSEM), as demonstrated by Li et al. 
(2025), has limitations due to DSEM’s linear parametric nature, which 
can distort outcomes when applied to nonlinear or nonparametric data. 
This distortion can lead SHAP to inherit and amplify biases in feature 
importances derived from DSEM. As a result, while the findings may 
uncover relationships among various stand structure factors and forest 
Net Primary Productivity (NPP), caution must be exercised in inter
preting these insights. Overall, it is crucial to complement this meth
odology with robust validation techniques to enhance informed 
decision-making and develop a comprehensive understanding of how 
to optimize agricultural and forestry productivity sustainably over time.

SHAP’s adherence to fairness axioms and its game-theoretic rigor do 
not insulate it from the biases and artifacts of the underlying supervised 
learner. Importance attributions are shaped by model choices such as 
tree depth, splitting criteria, and regularization settings, as well as data 
characteristics including feature correlation and imbalanced classes. 
Because there is no external ground truth for feature importance, SHAP 
values reflect the model’s internal logic rather than objective causal 
effects. Small changes in training-test splits, hyperparameters, or 
random seeds can yield substantially different rankings, and spurious 
interactions discovered by an overfitted ensemble may be mis
represented by SHAP as genuine signals.

To address these concerns, we advocate employing a multi-faceted, 
model-agnostic strategy that complements SHAP with additional 
methods. First, unsupervised feature-reduction techniques such as 
agglomeration and highly variable gene selection help eliminate noise 
and redundancy independent of any target variable. Second, nonpara
metric association measures such as Spearman rank correlations paired 
with formal p-value testing facilitate the quantification of monotonic 
relationships without relying on supervised predictions. Lastly, robust
ness checks including sensitivity analyses, feature ranking stability tests 
to examine the consistency of remaining ranks after removing top fea
tures, and expert validation should accompany every SHAP-based 
interpretation. By integrating game-theoretic explanations with 
dimension reduction and rigorous statistical testing, researchers can 
reduce their dependence on the peculiarities of a single model and ul
timately move closer to uncovering true variable interdependencies that 
support robust, data-driven policy.

SHAP estimates how features contribute to a model’s predictions, but 
those attributions reflect the model’s learned relationships rather than 
the true data-generating process. Decisions in forest management, crop 
monitoring, and climate adaptation require accurate, causal associations 
to guide action. Identifying which features most influence these de
cisions is therefore critical; if SHAP-based rankings are biased or mis
interpreted, interventions may target the wrong levers, misallocate 
resources, and ultimately worsen outcomes. To address this, the paper 
complements SHAP with unsupervised structure discovery (e.g., feature 
agglomeration and highly variable gene selection) and non-target, 
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nonlinear, nonparametric diagnostics (e.g., Spearman’s rank correlation 
with p-values), which together mitigate label-driven bias and improve 
the stability of feature rankings, whereas purely supervised pipelines are 
more prone to instability and can propagate misguidance into practice.
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