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risking unstable and policy-misleading importance rankings. This opinion advances a concrete, model-agnostic
workflow that goes beyond SHAP: pair unsupervised structure checks (e.g., feature agglomeration, highly var-
iable feature selection) with nonlinear, nonparametric association metrics and pre-registered sensitivity/stability

analyses, then audit attributions with domain-informed negative controls and decision impact tests. The novelty
lies in reframing SHAP from a standalone explainer to one component of a robustness protocol explicitly
designed to reduce label-driven and proxy bias. This integrated approach yields more reliable variable impor-
tance, tighter uncertainty communication, and clearer links between attribution changes and real policy choices.

In 2025, Computers and Electronics in Agriculture reported that 48
of its published articles employed SHapley Additive Explanations
(SHAP) to interpret machine-learning models—up sharply from 25 in
2024 and just 8 in 2023—highlighting the journal’s accelerating interest
in transparent, data-driven insights for agricultural challenges. Inter-
pretable machine learning here means not only achieving high predic-
tive accuracy but also understanding which input factors—such as land-
use density, traffic volume or ambient temperature—drive the model’s
forecasts. SHAP adapts the Shapley value concept from cooperative
game theory by treating each feature as a “player” in the prediction
“game” and allocating credit in proportion to its average marginal
contribution across all possible feature coalitions. Because Shapley
values satisfy properties like additivity (ensuring that the sum of indi-
vidual contributions equals the difference between a model’s output and
a baseline expectation) and symmetry (guaranteeing that interchange-
able features receive equal attribution), SHAP provides a principled,
mathematically grounded way to open the so-called “black box.” By
doing so, it helps researchers strike a balance between model perfor-
mance and substantive insight into urban systems.

Building on this momentum, Li et al. (2025) conducted an investi-
gation into the impact of stand structure on forest net primary produc-
tivity by employing a comprehensive integrated approach that combines
multiple machine learning models with SHAP (SHapley Additive ex-
Planations) and Dynamic Structural Equation Modeling (DSEM). SHAP
effectively identifies key variables and quantifies not only their
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significance but also the direction and magnitude of their impact. This
study synergistically merges various machine learning feature selection
techniques with SHAP to assess the relative importance of different
stand structure factors on forest Net Primary Productivity (NPP),
providing a nuanced understanding of their influence.

While supervised machine learning models like DSEM are adept at
identifying patterns and achieving strong predictive performance on
unseen data, the feature importance scores they produce—whether
based on split gains, permutation drops, or SHAP values—lack intrinsic
verifiability against an external “ground truth.” In predictive tasks, we
can validate accuracy by comparing forecasts with actual outcomes, but
no equivalent standard exists to unequivocally establish the real-world
significance of each input variable. As a result, high predictive accu-
racy does not necessarily ensure that the importance rankings are
dependable or unbiased (Parr et al., 2024; Watson & Wright, 2021;
Molnar et al., 2022; Lipton, 2018; Fisher, Rudin, & Dominici, 2019;
Lenhof et al., 2024; Mandler & Weigand, 2024; Potharlanka et al., 2024;
Wood et al., 2024). For example, features that correlate strongly with
the target variable but lack causal influence can still receive dispro-
portionately high importance scores. Additionally, the interplay among
features can lead to ambiguous credit-sharing, complicating the assess-
ment of their individual contributions. Various model parameters—such
as tree depth, learning rate, and random seed—can also exert substantial
influence on importance weights. Therefore, practitioners must recog-
nize that feature importance reflects the model’s internal logic rather
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than serving as an objective measure of each variable’s scientific or
policy significance. Furthermore, given the linear parametric nature of
DSEM, the resulting feature importances and other metric scores may be
significantly distorted when applied to nonlinear or nonparametric data
contexts, leading to skewed interpretations.

Despite SHAP’s rigorous game-theoretic underpinnings and its
adherence to fairness axioms, its attributions remain tied exclusively to
the chosen model and data sample. There is no independent ground
truth for “true” feature importance; SHAP values quantify marginal
contributions to the model’s predictions, not bona fide causal or asso-
ciative strengths in the system under study. Consequently, importance
scores can be unstable: small changes in data splitting, sampling stra-
tegies, hyperparameter configurations or even the random seed may
produce materially different rankings. Correlated features can divide or
inflate credit arbitrarily, imbalanced data can skew allocations toward
dominant classes, and overfitting can embed spurious patterns that
SHAP dutifully explains. In practice, therefore, SHAP outputs should be
treated as hypothesis generators rather than definitive answers. To build
confidence in the insights derived, researchers must perform robustness
checks such as sensitivity analyses, cross-model comparisons, domain-
expert vetting and, where appropriate, formal causal inference
methods before translating SHAP attributions into policy decisions.

The SHAP explanatory wrapper (e.g., explain=SHAP(model)) oper-
ates by querying the fitted DSEM model to estimate each feature’s
contribution to individual predictions. Because SHAP values are
computed using the same conditional expectations and structural in-
sights that DSEM has learned, any systematic distortions in feature
splitting, sample weighting, or interaction handling will be carried
through and, in some cases, magnified in the resulting importance scores
(Bilodeau et al., 2024; Hooshyar & Yang, 2024; Huang & Marques-Silva,
2024; Kumar et al., 2021; Létoffé et al., 2025; Lones, 2024; Molnar et al.,
2022; Wu, 2025). For instance, if a DSEM model inadvertently overfits a
spurious interaction between two correlated predictors, SHAP will
assign both features credit for that relationship, despite the possibility
that this interaction lacks grounding in the underlying data-generating
process. As a result, SHAP inherits the model’s inductive biases—such
as preferences for certain types of splits, heuristics for handling missing
values, and various regularization settings—and presents them as “ex-
planations.” Therefore, it is essential to interpret SHAP attributions with
an awareness of the DSEM model’s known strengths and limitations.

To mitigate reliance on a single supervised model’s internal logic and
thereby move closer to uncovering true associations rather than artifacts
of a particular predictive algorithm, this paper advocates a two-stage,
model-agnostic pipeline. First, we apply unsupervised techniques such
as feature agglomeration (which groups variables by similarity in high-
dimensional space) and highly variable gene selection (which retains
only those features exhibiting the greatest dispersion across samples).
These methods reduce dimensionality and filter out noisy or redundant
variables without referencing the outcome of interest. In the second
stage, we compute pairwise Spearman rank correlations, together with
their associated p-values, to capture nonlinear, monotonic relationships
and to formally test their statistical significance. By combining a data-
driven feature-reduction step with a robust, nonparametric association
metric, we aim to generate hypotheses about genuine variable in-
terdependencies that do not depend on the potentially biased mechanics
of any single supervised learner.

There are substantial differences between the approaches proposed
in this paper and the Li et al.’s pipeline (2025) that combines SHAP with
a Dynamic Structural Equation Model (DSEM) to capture temporal
variation. Li et al.’s pipeline remains fundamentally supervised—despite
ensembling multiple machine learning models with SHAP—while DSEM
is a linear, parametric framework. When the linearity and distributional
assumptions of DSEM are violated by the nonlinear, nonparametric
nature of real-world data, downstream metrics (including explained
variance) can be distorted. Moreover, applying SHAP across multiple
supervised models (for example, explain = SHAP(model) for model-1,
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model-2, ..., model-n ) can propagate and even amplify biases in
feature importance if those models share misspecification or label
leakage.

By contrast, the proposed method emphasizes unsupervised com-
ponents—such as feature agglomeration and highly variable gene
selection—that avoid label-driven bias and can outperform supervised
methods when labels are unreliable or absent. These are complemented
by non-target, supervised, nonlinear, and nonparametric diagnostics,
such as Spearman’s rank correlation with p-values, to provide robust-
ness without imposing restrictive parametric assumptions.

The growing adoption of SHAP in agricultural studies reflects an
urgent need for interpretable machine learning models capable of
generating insights that inform sustainable practices. By effectively
allocating credit to each feature based on its marginal contribution,
SHAP transforms black-box predictors into transparent tools that enable
researchers to draw meaningful connections between factors such as
stand density and species composition and their influence on forest
productivity forecasts. However, the integration of SHAP with Dynamic
Structural Equation Modeling (DSEM), as demonstrated by Li et al.
(2025), has limitations due to DSEM’s linear parametric nature, which
can distort outcomes when applied to nonlinear or nonparametric data.
This distortion can lead SHAP to inherit and amplify biases in feature
importances derived from DSEM. As a result, while the findings may
uncover relationships among various stand structure factors and forest
Net Primary Productivity (NPP), caution must be exercised in inter-
preting these insights. Overall, it is crucial to complement this meth-
odology with robust validation techniques to enhance informed
decision-making and develop a comprehensive understanding of how
to optimize agricultural and forestry productivity sustainably over time.

SHAP’s adherence to fairness axioms and its game-theoretic rigor do
not insulate it from the biases and artifacts of the underlying supervised
learner. Importance attributions are shaped by model choices such as
tree depth, splitting criteria, and regularization settings, as well as data
characteristics including feature correlation and imbalanced classes.
Because there is no external ground truth for feature importance, SHAP
values reflect the model’s internal logic rather than objective causal
effects. Small changes in training-test splits, hyperparameters, or
random seeds can yield substantially different rankings, and spurious
interactions discovered by an overfitted ensemble may be mis-
represented by SHAP as genuine signals.

To address these concerns, we advocate employing a multi-faceted,
model-agnostic strategy that complements SHAP with additional
methods. First, unsupervised feature-reduction techniques such as
agglomeration and highly variable gene selection help eliminate noise
and redundancy independent of any target variable. Second, nonpara-
metric association measures such as Spearman rank correlations paired
with formal p-value testing facilitate the quantification of monotonic
relationships without relying on supervised predictions. Lastly, robust-
ness checks including sensitivity analyses, feature ranking stability tests
to examine the consistency of remaining ranks after removing top fea-
tures, and expert validation should accompany every SHAP-based
interpretation. By integrating game-theoretic explanations with
dimension reduction and rigorous statistical testing, researchers can
reduce their dependence on the peculiarities of a single model and ul-
timately move closer to uncovering true variable interdependencies that
support robust, data-driven policy.

SHAP estimates how features contribute to a model’s predictions, but
those attributions reflect the model’s learned relationships rather than
the true data-generating process. Decisions in forest management, crop
monitoring, and climate adaptation require accurate, causal associations
to guide action. Identifying which features most influence these de-
cisions is therefore critical; if SHAP-based rankings are biased or mis-
interpreted, interventions may target the wrong levers, misallocate
resources, and ultimately worsen outcomes. To address this, the paper
complements SHAP with unsupervised structure discovery (e.g., feature
agglomeration and highly variable gene selection) and non-target,
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nonlinear, nonparametric diagnostics (e.g., Spearman’s rank correlation
with p-values), which together mitigate label-driven bias and improve
the stability of feature rankings, whereas purely supervised pipelines are
more prone to instability and can propagate misguidance into practice.

CRediT authorship contribution statement

Yoshiyasu Takefuji: Writing — review & editing, Writing — original
draft, Validation, Investigation, Conceptualization.

Funding

This research has no fund.

According to ScholarGPS, Yoshiyasu Takefuji holds notable global
rankings in several fields. He ranks 54th out of 395,884 scholars in
neural networks (AI), 23rd out of 47,799 in parallel computing, and
14th out of 7,222 in parallel algorithms. Furthermore, he ranks the
highest in Al tools and human-induced error analysis, underscoring his
significant contributions to these domains.

Declaration of competing interest

The author declares that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
No data was used for the research described in the article.

References

Bilodeau, B., Jaques, N., Koh, P.W., Kim, B., 2024. Impossibility theorems for feature
attribution. Proc. Natl. Acad. Sci. 121 (2), €2304406120. https://doi.org/10.1073/
pnas.2304406120.

Fisher, A., Rudin, C., Dominici, F., 2019. All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models
simultaneously. J. Mach. Learn. Res. 20, 177.

Computers and Electronics in Agriculture 240 (2026) 111226

Hooshyar, D., Yang, Y., 2024. Problems with SHAP and LIME in Interpretable Al for
Education: a Comparative Study of Post-Hoc Explanations and Neural-Symbolic Rule
Extraction. IEEE Access 12, 137472-137490. https://doi.org/10.1109/
ACCESS.2024.3463948.

Huang, X., Marques-Silva, J., 2024. On the failings of Shapley values for explainability.
Int. J. Approx. Reason. 171, 109112. https://doi.org/10.1016/j.ijar.2023.109112.

Kumar, I., Scheidegger, C., Venkatasubramanian, S., Friedler, S., 2021. Shapley residuals:
Quantifying the limits of the Shapley value for explanations. Adv. Neural Inf. Proces.
Syst. 34, 26598-26608.

Lenhof, K., Eckhart, L., Rolli, L.M., Lenhof, H.P., 2024. Trust me if you can: a survey on
reliability and interpretability of machine learning approaches for drug sensitivity
prediction in cancer. Brief. Bioinform. 25 (5), bbae379. https://doi.org/10.1093/
bib/bbae379.

Létoffé, O., Huang, X., Marques-Silva, J., 2025. Towards trustable SHAP scores.
Proceedings of the AAAI Conference on Artificial Intelligence 39 (17), 18198-18208.
https://doi.org/10.1609/aaai.v39i17.34002.

Li, T., Wu, Y., Ren, F,, Tian, L., Li, M., 2025. Assessing the impact of stand structure on
forest net primary productivity: a multiple machine learning-SHAP models and
DSEM integrated approach. Comput. Electron. Agric. 236, 110427. https://doi.org/
10.1016/j.compag.2025.110427.

Lipton, Z.C., 2018. The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue 16 (3), 31-57.
https://doi.org/10.1145/3236386.3241340.

Lones, M.A., 2024. Avoiding Common Machine Learning Pitfalls. Patterns 5 (10),
101046. https://doi.org/10.1016/j.patter.2024.101046.

Mandler, H., Weigand, B., 2024. A review and benchmark of feature importance methods
for neural networks. ACM Comput. Surv. 56 (12), 318. https://doi.org/10.1145/
3679012.

Molnar, C., Konig, G., Herbinger, J., Freiesleben, T., Dand], S., Scholbeck, C.A,, et al.,
2022. General pitfalls of model-agnostic interpretation methods for machine
learning models. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., Miiller, K.R.,
Samek, W. (Eds.), xxAl—beyond Explainable AI, Vol. 13200. Springer. https://doi.
org/10.1007/978-3-031-04083-2_4.

Parr, T., Hamrick, J., Wilson, J.D., 2024. Nonparametric feature impact and importance.
Inf. Sci. 653, 119563. https://doi.org/10.1016/].ins.2023.119563.

Potharlanka, J.L., Bhat, M., N., 2024. Feature importance feedback with Deep Q process
in ensemble-based metaheuristic feature selection algorithms. Sci. Rep. 14 (1), 2923.
https://doi.org/10.1038/541598-024-53141-w.

Watson, D.S., Wright, M.N., 2021. Testing conditional independence in supervised
learning algorithms. Mach. Learn. 110 (8), 2107-2129. https://doi.org/10.1007/
510994-021-06030-6.

Wood, D., Papamarkou, T., Benatan, M., et al., 2024. Model-agnostic variable importance
for predictive uncertainty: an entropy-based approach. Data Min. Knowl. Disc. 38,
4184-4216. https://doi.org/10.1007/s10618-024-01070-7.

Wu, L., 2025. A review of the transition from Shapley values and SHAP values to RGE.
Statistics 1-23. https://doi.org/10.1080/02331888.2025.2487853.


https://doi.org/10.1073/pnas.2304406120
https://doi.org/10.1073/pnas.2304406120
http://refhub.elsevier.com/S0168-1699(25)01332-8/h0010
http://refhub.elsevier.com/S0168-1699(25)01332-8/h0010
http://refhub.elsevier.com/S0168-1699(25)01332-8/h0010
https://doi.org/10.1109/ACCESS.2024.3463948
https://doi.org/10.1109/ACCESS.2024.3463948
https://doi.org/10.1016/j.ijar.2023.109112
http://refhub.elsevier.com/S0168-1699(25)01332-8/h0025
http://refhub.elsevier.com/S0168-1699(25)01332-8/h0025
http://refhub.elsevier.com/S0168-1699(25)01332-8/h0025
https://doi.org/10.1093/bib/bbae379
https://doi.org/10.1093/bib/bbae379
https://doi.org/10.1609/aaai.v39i17.34002
https://doi.org/10.1016/j.compag.2025.110427
https://doi.org/10.1016/j.compag.2025.110427
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1016/j.patter.2024.101046
https://doi.org/10.1145/3679012
https://doi.org/10.1145/3679012
https://doi.org/10.1007/978-3-031-04083-2_4
https://doi.org/10.1007/978-3-031-04083-2_4
https://doi.org/10.1016/j.ins.2023.119563
https://doi.org/10.1038/s41598-024-53141-w
https://doi.org/10.1007/s10994-021-06030-6
https://doi.org/10.1007/s10994-021-06030-6
https://doi.org/10.1007/s10618-024-01070-7
https://doi.org/10.1080/02331888.2025.2487853

	Beyond the black box: Enhancing feature explainability in machine learning with SHAP and complementary approaches
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


