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EditordIn their recent study of opioid use in children, Atias

and colleagues1 utilised SHAP (SHapley Additive exPlanations)

analysis in conjunction with eXtreme Gradient Boosting

(XGBoost) to identify influential variables such as the

number of diagnoses, medical imaging, laboratory tests, and

the type of opioid used. However, the application of SHAP

analysis is not ideal and is limited because of inherent biases

in the feature importances derived from XGBoost, which can

lead to misleading conclusions. This model-specific nature

implies that different models yield distinct sets of feature

importances, even when the true associations between the

target and features are calculable. To avoid biased feature

importances, it is recommended to rely on statistical methods

that assess genuine associations, such as Spearman’s

correlation with P-values.

The recommendation to use Spearman’s correlation with P-

values is primarily because of its nonparametric nature, which

makes it suitable for analysing data that might not meet the

assumptions of a normal distribution. This method is particu-

larly valuable when dealing with ordinal data or when the

relationship between variables is not linear. It is important to

note that thesemethods imposespecificassumptions regarding

the underlying data distributions. For instance, Student’s t-test

requires normally distributed data, whereas theWilcoxon rank

sumtest is used for comparing two independent samples under

certain conditions. Fisher’s exact test, although useful for small

sample sizes, applies specifically to categorical data organised

in a contingency table. By highlighting Spearman’s correlation,

this paper aims to emphasise a robust approach that can be

more broadly applicable across varied datasets without strin-

gent assumptions. This flexibility allows researchers to capture

genuine associations in their analyses, making it strongly rec-

ommended for preliminary investigations.

Biases in feature importance metrics can arise from mis-

interpretations related to SHAP values, specifically in the
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context of the function explain¼SHAP(model). An extensive

body of literature, comprising over 100 articles, has investi-

gated biases in feature importance derived from machine

learning models, particularly XGBoost. It is crucial to under-

stand that SHAP values are inherently connected to the un-

derlying machine learning model, in this instance, XGBoost.

As a result, SHAP values can inherit and even exacerbate the

biases present in the model, underscoring the need for careful

interpretation when evaluating feature importance.

Although many researchers, including Atias and col-

leagues, utilise SHAP analysis, machine learning models such

as XGBoost can produce biased feature importances,2e6 so

unbiased, machine learning-independent methods that pro-

vide true associations are preferred and should be used. The

primary goal of machine learning is to predict the target

accurately; however, feature importances derived from these

models are merely byproducts. Each model employs different

algorithms for calculating feature importances, a phenome-

non known as model-specific bias.2e6

Different machine learning models employ distinct meth-

odologies for calculating feature importances, leading to

varying degrees of bias. For instance, decision tree-based al-

gorithms, such as XGBoost, build ensembles of trees sequen-

tially, with each tree attempting to rectify the errors of its

predecessors. Although XGBoost is highly effective for pre-

dictive tasks, the inherent characteristics of this approach can

introduce biases in the reported feature importance values. In

addition to XGBoost, other models, such as linear regression

and certain ensemble methods, can also exhibit biases

depending on their underlying assumptions and structures.

Although several bias mitigation techniques exist, none

can entirely eliminate these biases from feature importances.

Given this context, it is important to use Spearman’s correla-

tion with P-values to assess true associations between the

target variable and features. This method accounts for
eserved, including those for text and data mining, AI training, and similar
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nonparametric relationships and offers a robust means of

evaluating feature relevance, thereby reducing the reliance on

potentially biased feature importance values.

Machine learning models such as XGBoost can generate

feature importance biases for several reasons. Firstly, the

concept of model specificity plays a significant role. Different

algorithms have their unique methodologies for calculating

feature importance, which can result in considerable variation

across models. For instance, XGBoost employs a tree-based

approach that evaluates each feature’s contribution based on

criteria such as gain, cover, or the frequency of splits. This

reliance on specific metrics can lead to biased estimations of

importance, which might not accurately reflect the actual re-

lationships within the data. Secondly, interaction effects can

complicate the interpretation of feature importance. Tree-

based models, including XGBoost, tend to capture in-

teractions among features, meaning a feature’s importance

can be artificially inflated if it interacts with another feature. In

contrast, a feature can appear less important when assessed

independently. Such interactions can obscure the true con-

tributions of individual features, making it challenging to

gauge their real impact.

Another contributing factor is the presence of correlated

features. When features are highly correlated, the model

might assign importance to one feature over another on an

arbitrary basis. This phenomenon can lead to misleading

conclusions regarding which features genuinely drive pre-

dictions, as multiple features might provide redundant infor-

mation. When features are correlated or collinear, the model’s

assignment of importance to individual features can appear

somewhat arbitrary because of the interconnected nature of

these variables. In essence, when two ormore features convey

similar information regarding the target variable, the model

might disproportionately attribute importance to one feature

over the others based on the order in which the features are

added during the training process, especially in algorithms

such as decision trees and ensemble methods (e.g. XGBoost).

For example, in decision tree algorithms, the importance of

a feature is often derived from the reduction in impurity (e.g.

Gini impurity or entropy) that the feature provides when it is

used to split the data. If two correlated features are available,

the model might select one feature for the initial splits, espe-

cially if it happens to yield a slightly better impurity reduction

at that point. As the tree grows, the first feature chosen can

dominate the importance ranking, overshadowing the con-

tributions of the other correlated feature(s). This can lead to a

misleading interpretation where one feature is deemed

significantly more important than another, even though both

features are fundamentally providing similar insights into the

underlying patterns in the data. This phenomenon can result

in instability in the feature importance rankings when the

model is retrained with slight variations in the data or other

hyperparameters. Additionally, the assignment of importance

can differ significantly across different models, or even

different configurations of the samemodel, depending on how

they handle correlated features.

Overfitting is also a critical concern. XGBoost, like other

sophisticatedmodels, can overfit the training data, resulting in

the assignment of high importance to features that seem

relevant solely within the context of the training set. Such

featuresmight not hold true across different datasets, creating

a biased perception of importance that lacks generalisability.

Additionally, the lack of statistical validation in assessing

feature importance is noteworthy. Traditional statistical
methods, such as P-values and confidence intervals, offer

frameworks for evaluating the reliability of estimates. In

contrast, feature importance scores derived from machine

learning models often lack such statistical backing, leading to

uncertainties regarding their validity. Therefore, what might

seem like a significant feature might not be statistically

supported.

The biasevariance trade-off further complicates matters.

As models become more complex to reduce bias by capturing

intricate patterns in the data, they can inadvertently increase

variance. This increase can cause the importance of some

features to fluctuate significantly across different samples or

cross-validation folds, resulting in inconsistent feature

importance assessments.

Lastly, feature engineering can also introduce biases into

feature importance. The way features are constructed or

transformed can skew their importance scores. For example,

aggregating features or applying nonlinear transformations

may distort the relationships the model assigns to them.

Recognising these biases is crucial for researchers, as it

prompts a cautious interpretation of feature importance

derived from XGBoost and similar machine learning models.

To address potential biases, employing complementary sta-

tistical methods to unveil true associations can provide amore

accurate understanding of feature contributions.

It is crucial to understand that feature engineering can

introduce biases into feature importance calculations if not

performed thoughtfully. Although comparing SHAP values

within a model can provide insights into relative feature

importance, these comparisons can still carry biases derived

from both the underlying model and the feature engineering

process itself. For feature engineering to be effective and yield

valid insights, it is essential that the base model is unbiased.

When biases are present in the model, any engineered fea-

tures might inadvertently amplify these biases rather than

mitigate them. This is particularly concerning when using

SHAP values, as they are intrinsically dependent on the model

being analysed. Because SHAP values are computed based on

how the model weights the contributions of individual fea-

tures, any biases in the model will be reflected in the SHAP

calculations, potentially skewing the interpretation of feature

importance.

Therefore, although relative comparisons of SHAP values

among features can shed light on their importance within the

context of a specific model, it remains critically important to

be cautious of the potential biases that can affect these values.

Approaches aimed at minimising bias are essential for accu-

rately capturing true associations between features and the

target variable. No method, SHAP included, can completely

eliminate the effect of biases inherent in the model or intro-

duced through the feature engineering process. By ensuring

rigorous validation and critical evaluation of both the feature

engineering approach and model performance, researchers

can work towards more reliable interpretations of feature

importance. This is not meant to discourage machine learning

for prediction, but rather to encourage analysis of the true

associations between the target and features without biases

using statistical methods such as Spearman’s correlation with

P-values.7e9

In conclusion, although Atias and colleagues1 leveraged

SHAP analysis alongside XGBoost to identify key variables in

healthcare, the inherent biases in feature importance derived

from this model raise significant concerns about the validity of

their findings. The model-specific nature of feature
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importance can lead to misleading conclusions, as different

algorithms can yield disparate importance scores despite

potentially calculable true associations. To enhance the reli-

ability of insights, it is essential to employ unbiased statistical

methods, such as c2- tests and Spearman’s correlation, which

provide a more accurate assessment of variable relevance.

Ultimately, recognising and addressing these biases will lead

to a clearer understanding of the relationships between fea-

tures and the target in machine learning applications.
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