
Limitations of SHAP-based interpretability in sepsis progression models and paths to more robust 
feature validation

To the Editor,

Zhou et al. developed machine learning models to predict progres
sion from sepsis to septic shock using MIMIC-IV and eICU-CRD data
bases [1]. Their methodology encompassed constructing a cohort of 
adult ICU patients with sepsis, applying LASSO regression for feature 
selection, and training six supervised learning algorithms (logistic 
regression, naïve Bayes, random forests, support vector machines, 
XGBoost, and LightGBM). The MIMIC-IV dataset served as the training 
set with external validation performed on eICU data. SHAP analysis was 
employed to interpret feature contributions in their model.

However, their interpretability framework raises significant meth
odological concerns. Supervised machine learning models contain two 
distinct forms of accuracy: target prediction performance and feature 
importance reliability. While prediction accuracy can be validated 
against known outcomes, feature importance lacks a ground truth 
reference. Consequently, SHAP values characterize model behavior 
rather than genuine clinical associations. Research demonstrates these 
explanatory methods are sensitive to model architecture, predictor 
correlations, missing data patterns, and dataset perturbations—often 
producing unstable feature rankings across different algorithms. These 
vulnerabilities are particularly problematic in ICU datasets, where 
multicollinearity, non-random missingness, and treatment-dependent 
confounding represent common challenges [2–10].

To determine whether feature importance reflects true clinical re
lationships rather than computational artifacts, several validation 
criteria must be met [11–20]: consistency across cohorts and models, 
demonstration of dose–response relationships, biological plausibility, 
and appropriate temporal alignment between predictors and outcomes. 
Since supervised learning alone cannot fully establish these criter
ia—especially when outcome labels may be influenced by diagnostic 
delays, institutional practices, or intervention effects—feature impor
tance should not rely solely on techniques like SHAP. Additionally, 
leave-top-1-out stress testing provides a direct means of probing 
robustness: after selecting features from the full set (set 1), the highest- 
ranked feature is removed to form a reduced dataset, and the top fea
tures are reselected (set 2). If importance rankings reflect true physio
logical relationships, this process should yield predictable and 
proportionate shifts. Erratic reordering instead suggests instability 
driven by correlated variables, model dependence, or label noise.

To enhance interpretability, we recommend supplementing the 
analysis with unsupervised feature stability approaches such as Feature 
Agglomeration and highly variable feature selection, complemented by 
non-targeted, nonlinear, nonparametric association tests like Spearman 
correlation with significance testing. These methods operate indepen
dently of outcome labels, helping avoid label-driven distortions and 
reducing model-specific artifacts. Integrating unsupervised and 

nonparametric techniques with supervised modeling would provide a 
more reliable understanding of variables truly driving progression from 
sepsis to septic shock.
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