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Limitations of SHAP-based interpretability in sepsis progression models and paths to more robust

feature validation

To the Editor,

Zhou et al. developed machine learning models to predict progres-
sion from sepsis to septic shock using MIMIC-IV and eICU-CRD data-
bases [1]. Their methodology encompassed constructing a cohort of
adult ICU patients with sepsis, applying LASSO regression for feature
selection, and training six supervised learning algorithms (logistic
regression, naive Bayes, random forests, support vector machines,
XGBoost, and LightGBM). The MIMIC-IV dataset served as the training
set with external validation performed on eICU data. SHAP analysis was
employed to interpret feature contributions in their model.

However, their interpretability framework raises significant meth-
odological concerns. Supervised machine learning models contain two
distinct forms of accuracy: target prediction performance and feature
importance reliability. While prediction accuracy can be validated
against known outcomes, feature importance lacks a ground truth
reference. Consequently, SHAP values characterize model behavior
rather than genuine clinical associations. Research demonstrates these
explanatory methods are sensitive to model architecture, predictor
correlations, missing data patterns, and dataset perturbations—often
producing unstable feature rankings across different algorithms. These
vulnerabilities are particularly problematic in ICU datasets, where
multicollinearity, non-random missingness, and treatment-dependent
confounding represent common challenges [2-10].

To determine whether feature importance reflects true clinical re-
lationships rather than computational artifacts, several validation
criteria must be met [11-20]: consistency across cohorts and models,
demonstration of dose-response relationships, biological plausibility,
and appropriate temporal alignment between predictors and outcomes.
Since supervised learning alone cannot fully establish these criter-
ia—especially when outcome labels may be influenced by diagnostic
delays, institutional practices, or intervention effects—feature impor-
tance should not rely solely on techniques like SHAP. Additionally,
leave-top-1-out stress testing provides a direct means of probing
robustness: after selecting features from the full set (set 1), the highest-
ranked feature is removed to form a reduced dataset, and the top fea-
tures are reselected (set 2). If importance rankings reflect true physio-
logical relationships, this process should yield predictable and
proportionate shifts. Erratic reordering instead suggests instability
driven by correlated variables, model dependence, or label noise.

To enhance interpretability, we recommend supplementing the
analysis with unsupervised feature stability approaches such as Feature
Agglomeration and highly variable feature selection, complemented by
non-targeted, nonlinear, nonparametric association tests like Spearman
correlation with significance testing. These methods operate indepen-
dently of outcome labels, helping avoid label-driven distortions and
reducing model-specific artifacts. Integrating unsupervised and
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nonparametric techniques with supervised modeling would provide a
more reliable understanding of variables truly driving progression from
sepsis to septic shock.
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