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Stability of feature attribution: Contrasting supervised and unsupervised selection for 
radiopathomics and TCGA outcomes
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A B S T R A C T

Interpretable machine learning is increasingly used in oncology, yet feature attributions from supervised models 
(e.g., Random Forest, XGBoost) can be unstable and bias-prone when grounded solely in SHAP explanations. We 
contrast target-prediction accuracy with the reliability of feature-importance estimates and assess stability via 
feature-elimination tests on TCGA data (705 samples, 1936 features). While supervised models achieved modest 
gains (Random Forest ROC–AUC: 0.8851 to 0.8865; XGBoost: 0.8681 to 0.8695), their feature-selection stability 
was low (6/10 and 3/10 retained, respectively). Unsupervised and non-target methods were markedly more 
stable: Feature Agglomeration, Highly Variable Gene Selection, and Spearman retained 10/10 features with 
unchanged performance (0.8823, 0.8823, 0.8766). We recommend combining unsupervised criteria with causal 
design and external validation to mitigate model-specific biases.

Huang et al. developed a multimodal radiopathomics signature to 
predict response to immunotherapy-based combination therapy in 
gastric cancer using interpretable machine learning [1]. They evaluated 
a range of classifiers, including Logistic Regression (LR), Decision Tree 
(DT), K-Nearest Neighbors (KNN), Naive Bayes (NB), Random Forest 
(RF), XGBoost (XGB), and Support Vector Machine (SVM). Model per
formance was reported using receiver operating characteristic–area 
under the curve (ROC–AUC), supplemented by standard metrics and 
confusion matrices. To enhance interpretability, they applied SHapley 
Additive exPlanations (SHAP) to quantify the contribution of individual 
radiopathomic features to predicted outcomes. In transparent machine 
learning, SHAP values provide instance-level feature attributions by 
estimating each feature’s marginal contribution to a model’s prediction 
across data points [1].

This paper is intended as a methodological warning against relying 
solely on supervised models with SHAP. Three methodological consid
erations are critical for interpreting such analyses. First, supervised 
learning entails two distinct notions of performance: target-prediction 
accuracy (which can be validated against ground-truth labels) and the 
reliability of feature-importance estimates (for which ground truth 
typically does not exist). Second, because feature importance lacks a 
ground-truth reference, high predictive accuracy does not ensure that 
inferred importances reflect true causal or associative relationships 
[2–10]; importances capture contributions to the model’s predictions 
and can be biased by data artifacts, confounding, leakage, or model 
misspecification. Third, when explanations are computed as ’explain =
SHAP(model)’ for a supervised model, SHAP attributes importance 
relative to that model’s decision function. Consequently, SHAP can 
inherit, propagate, and sometimes amplify a model’s existing biases in 
feature attribution [11–20]. Robust causal inference strategies and 
external validation are therefore necessary to substantiate any biological 
or clinical interpretations derived from feature importances.

These points raise both theoretical and empirical concerns about 

using supervised models for feature attribution and, by extension, about 
relying on SHAP for scientific interpretation when explanations are 
anchored to a single model. While SHAP is a powerful and widely 
adopted diagnosis tool, exclusive dependence on any given supervised 
model can yield unreliable attributions. A practical way to assess sta
bility is through feature-perturbation or elimination tests: iteratively 
remove top-ranked features from the full set and examine whether 
feature rankings and performance remain consistent. Supervised models 
often display instability under such tests because attributions are label- 
driven and sensitive to confounding, outcome prevalence, collinearity, 
and shifts in decision boundaries when correlated predictors are 
removed. By contrast, unsupervised methods can exhibit greater sta
bility in rankings because they do not condition on labels; they prioritize 
structure intrinsic to the feature space (e.g., variance, clustering cohe
sion, manifold geometry), making them less susceptible to label noise, 
mis-specified loss functions, class imbalance, and label leakage. More
over, unsupervised criteria (such as redundancy reduction and stability 
selection across bootstraps) tend to be more robust to multicollinearity 
and reweight correlated features more evenly, reducing the volatility 
seen in supervised attributions. Still, greater stability does not imply 
causal validity; feature importance quantifies contribution to prediction, 
not underlying mechanistic truth.

There is no single algorithm that can accurately recover “true” as
sociations between variables from observational data. This paper 
therefore advocates a multifaceted strategy that combines unsupervised 
models with non-target supervised analyses, alongside rigorous sensi
tivity and stability checks. Approaches such as feature agglomeration 
(FA) and highly variable gene selection (HVGS) can identify stable, 
structure-driven feature sets. Rank-based association measures like 
Spearman’s correlation with p-values offer a nonlinear nonparametric, 
monotonic, and robust alternative that does not rely on target labels. 
Together with external validation, causal design principles (e.g., nega
tive controls, instrumental variables where appropriate), and cross- 
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cohort replication, these methods can mitigate model-specific biases and 
support more reliable scientific interpretation.

In the absence of Huang et al.’s datasets, we evaluate feature- 
selection effectiveness on publicly available TCGA data (705 samples, 
1936 features) [21] by selecting the Top 10 features from the full set and 
assessing predictive performance via cross-validated accuracy, where 
higher accuracy indicates better selection. We compare supervised 
models (Random Forest, XGBoost, Logistic Regression), unsupervised 
methods (Feature Agglomeration, Highly Variable Gene Selection), and 
a non-target supervised approach (Spearman’s correlation). To probe 
stability, we remove the highest-ranked feature from the full set to form 
a reduced dataset, reselect the Top 9 features, and then compare ranking 
concordance between the two selections, implementing a 
perturbation-based protocol aligned with best practices for stability 
assessment. This procedure quantifies sensitivity of rankings to feature 
removal while benchmarking predictive utility under consistent 
cross-validation and supports more reliable interpretation alongside 
external validation.

Removing the highest-ranked feature represents a targeted pertur
bation specifically designed to test the underlying robustness of the 
feature importance hierarchy, not just set membership. This approach 
directly addresses whether features derive their importance from true 
underlying relationships or from correlations with the top feature.

While conventional stability metrics like Jaccard indices quantify set 
overlap, they fail to capture the critical ordering information in feature 
rankings. Our perturbation test specifically evaluates whether secondary 
features maintain their relative positions when the dominant feature is 
removed—a stronger criterion than set membership stability. If rankings 
dramatically shuffle after removing the top feature, this reveals poten
tial collinearity effects or signal "borrowing" that conventional stability 
measures would miss.

Our targeted approach deliberately tests the worst-case perturbation 
scenario that most directly challenges the reliability of feature rankings 
for biological interpretation—precisely the use case we caution against 
in the manuscript.

Our tests reveal a clear contrast in stability between supervised and 
unsupervised approaches. Among the supervised models, Random For
est improves slightly from 0.8851 (Top 10) to 0.8865 (combined) but 
retains only 6/10 features in the stability test, while XGBoost increases 
from 0.8681 to 0.8695 yet shows the lowest stability at 3/10 features. In 
contrast, the unsupervised methods are markedly more stable: Feature 
Agglomeration holds steady at 0.8823 for both Top 10 and combined 
and achieves perfect stability with 10/10 features retained; Spearman’s 
correlation also shows identical performance at 0.8766 and perfect 
stability at 10/10 features. Highly Variable Gene Selection (HVGS) 
maintains identical scores at 0.8823, reinforcing the overall pattern that 
unsupervised and non-target methods offer higher feature-selection 
stability, even when predictive performance remains unchanged. 
"combined" refers to a hybrid feature set created by taking the top 1 
feature from the original dataset and joining it with the top 9 features 
selected from the reduced dataset (where the original top feature has 
been removed). For purposes of reproducibility and transparency, Py
thon code, stability.py, is publicly available at GitHub [22].

To accurately calculate true associations [23–28], we must examine 
two key issues: 

1. Consistency: True associations should replicate across different 
studies, settings, and populations. Our approach specifically ad
dresses this by examining stability across feature subsets.

2. Dose-response relationship: True associations should demonstrate 
systematic changes in outcome with varying levels of exposure. Our 
leave-one-out approach explicitly tests this by measuring how pre
diction changes when specific features are removed or modified.

While unsupervised methods might achieve stability by ignoring the 
outcome entirely, and supervised methods might be unstable due to 

multiple equivalent predictive feature subsets, our method navigates 
this trade-off. By implementing consistency checks via stability assess
ment and examining dose-response relationships through systematic 
feature perturbation, we provide a more robust framework for dis
tinguishing reliable feature associations from artifacts of model selec
tion. Rather than merely accepting instability as an inherent property of 
having multiple equivalent models, our approach helps identify which 
feature associations persist across the space of near-equivalent models, 
offering stronger evidence for scientific interpretation.
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