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Interpretable machine learning is increasingly used in oncology, yet feature attributions from supervised models
(e.g., Random Forest, XGBoost) can be unstable and bias-prone when grounded solely in SHAP explanations. We
contrast target-prediction accuracy with the reliability of feature-importance estimates and assess stability via
feature-elimination tests on TCGA data (705 samples, 1936 features). While supervised models achieved modest
gains (Random Forest ROC-AUC: 0.8851 to 0.8865; XGBoost: 0.8681 to 0.8695), their feature-selection stability

was low (6/10 and 3/10 retained, respectively). Unsupervised and non-target methods were markedly more
stable: Feature Agglomeration, Highly Variable Gene Selection, and Spearman retained 10/10 features with
unchanged performance (0.8823, 0.8823, 0.8766). We recommend combining unsupervised criteria with causal
design and external validation to mitigate model-specific biases.

Huang et al. developed a multimodal radiopathomics signature to
predict response to immunotherapy-based combination therapy in
gastric cancer using interpretable machine learning [1]. They evaluated
a range of classifiers, including Logistic Regression (LR), Decision Tree
(DT), K-Nearest Neighbors (KNN), Naive Bayes (NB), Random Forest
(RF), XGBoost (XGB), and Support Vector Machine (SVM). Model per-
formance was reported using receiver operating characteristic-area
under the curve (ROC-AUC), supplemented by standard metrics and
confusion matrices. To enhance interpretability, they applied SHapley
Additive exPlanations (SHAP) to quantify the contribution of individual
radiopathomic features to predicted outcomes. In transparent machine
learning, SHAP values provide instance-level feature attributions by
estimating each feature’s marginal contribution to a model’s prediction
across data points [1].

This paper is intended as a methodological warning against relying
solely on supervised models with SHAP. Three methodological consid-
erations are critical for interpreting such analyses. First, supervised
learning entails two distinct notions of performance: target-prediction
accuracy (which can be validated against ground-truth labels) and the
reliability of feature-importance estimates (for which ground truth
typically does not exist). Second, because feature importance lacks a
ground-truth reference, high predictive accuracy does not ensure that
inferred importances reflect true causal or associative relationships
[2-10]; importances capture contributions to the model’s predictions
and can be biased by data artifacts, confounding, leakage, or model
misspecification. Third, when explanations are computed as ’explain =
SHAP(model)’ for a supervised model, SHAP attributes importance
relative to that model’s decision function. Consequently, SHAP can
inherit, propagate, and sometimes amplify a model’s existing biases in
feature attribution [11-20]. Robust causal inference strategies and
external validation are therefore necessary to substantiate any biological
or clinical interpretations derived from feature importances.

These points raise both theoretical and empirical concerns about
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using supervised models for feature attribution and, by extension, about
relying on SHAP for scientific interpretation when explanations are
anchored to a single model. While SHAP is a powerful and widely
adopted diagnosis tool, exclusive dependence on any given supervised
model can yield unreliable attributions. A practical way to assess sta-
bility is through feature-perturbation or elimination tests: iteratively
remove top-ranked features from the full set and examine whether
feature rankings and performance remain consistent. Supervised models
often display instability under such tests because attributions are label-
driven and sensitive to confounding, outcome prevalence, collinearity,
and shifts in decision boundaries when correlated predictors are
removed. By contrast, unsupervised methods can exhibit greater sta-
bility in rankings because they do not condition on labels; they prioritize
structure intrinsic to the feature space (e.g., variance, clustering cohe-
sion, manifold geometry), making them less susceptible to label noise,
mis-specified loss functions, class imbalance, and label leakage. More-
over, unsupervised criteria (such as redundancy reduction and stability
selection across bootstraps) tend to be more robust to multicollinearity
and reweight correlated features more evenly, reducing the volatility
seen in supervised attributions. Still, greater stability does not imply
causal validity; feature importance quantifies contribution to prediction,
not underlying mechanistic truth.

There is no single algorithm that can accurately recover “true” as-
sociations between variables from observational data. This paper
therefore advocates a multifaceted strategy that combines unsupervised
models with non-target supervised analyses, alongside rigorous sensi-
tivity and stability checks. Approaches such as feature agglomeration
(FA) and highly variable gene selection (HVGS) can identify stable,
structure-driven feature sets. Rank-based association measures like
Spearman’s correlation with p-values offer a nonlinear nonparametric,
monotonic, and robust alternative that does not rely on target labels.
Together with external validation, causal design principles (e.g., nega-
tive controls, instrumental variables where appropriate), and cross-
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cohort replication, these methods can mitigate model-specific biases and
support more reliable scientific interpretation.

In the absence of Huang et al.’s datasets, we evaluate feature-
selection effectiveness on publicly available TCGA data (705 samples,
1936 features) [21] by selecting the Top 10 features from the full set and
assessing predictive performance via cross-validated accuracy, where
higher accuracy indicates better selection. We compare supervised
models (Random Forest, XGBoost, Logistic Regression), unsupervised
methods (Feature Agglomeration, Highly Variable Gene Selection), and
a non-target supervised approach (Spearman’s correlation). To probe
stability, we remove the highest-ranked feature from the full set to form
areduced dataset, reselect the Top 9 features, and then compare ranking
concordance between the two selections, implementing a
perturbation-based protocol aligned with best practices for stability
assessment. This procedure quantifies sensitivity of rankings to feature
removal while benchmarking predictive utility under consistent
cross-validation and supports more reliable interpretation alongside
external validation.

Removing the highest-ranked feature represents a targeted pertur-
bation specifically designed to test the underlying robustness of the
feature importance hierarchy, not just set membership. This approach
directly addresses whether features derive their importance from true
underlying relationships or from correlations with the top feature.

While conventional stability metrics like Jaccard indices quantify set
overlap, they fail to capture the critical ordering information in feature
rankings. Our perturbation test specifically evaluates whether secondary
features maintain their relative positions when the dominant feature is
removed—a stronger criterion than set membership stability. If rankings
dramatically shuffle after removing the top feature, this reveals poten-
tial collinearity effects or signal "borrowing" that conventional stability
measures would miss.

Our targeted approach deliberately tests the worst-case perturbation
scenario that most directly challenges the reliability of feature rankings
for biological interpretation—precisely the use case we caution against
in the manuscript.

Our tests reveal a clear contrast in stability between supervised and
unsupervised approaches. Among the supervised models, Random For-
est improves slightly from 0.8851 (Top 10) to 0.8865 (combined) but
retains only 6/10 features in the stability test, while XGBoost increases
from 0.8681 to 0.8695 yet shows the lowest stability at 3/10 features. In
contrast, the unsupervised methods are markedly more stable: Feature
Agglomeration holds steady at 0.8823 for both Top 10 and combined
and achieves perfect stability with 10/10 features retained; Spearman’s
correlation also shows identical performance at 0.8766 and perfect
stability at 10/10 features. Highly Variable Gene Selection (HVGS)
maintains identical scores at 0.8823, reinforcing the overall pattern that
unsupervised and non-target methods offer higher feature-selection
stability, even when predictive performance remains unchanged.
"combined" refers to a hybrid feature set created by taking the top 1
feature from the original dataset and joining it with the top 9 features
selected from the reduced dataset (where the original top feature has
been removed). For purposes of reproducibility and transparency, Py-
thon code, stability.py, is publicly available at GitHub [22].

To accurately calculate true associations [23-28], we must examine
two key issues:

1. Consistency: True associations should replicate across different
studies, settings, and populations. Our approach specifically ad-
dresses this by examining stability across feature subsets.

2. Dose-response relationship: True associations should demonstrate
systematic changes in outcome with varying levels of exposure. Our
leave-one-out approach explicitly tests this by measuring how pre-
diction changes when specific features are removed or modified.

While unsupervised methods might achieve stability by ignoring the
outcome entirely, and supervised methods might be unstable due to
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multiple equivalent predictive feature subsets, our method navigates
this trade-off. By implementing consistency checks via stability assess-
ment and examining dose-response relationships through systematic
feature perturbation, we provide a more robust framework for dis-
tinguishing reliable feature associations from artifacts of model selec-
tion. Rather than merely accepting instability as an inherent property of
having multiple equivalent models, our approach helps identify which
feature associations persist across the space of near-equivalent models,
offering stronger evidence for scientific interpretation.
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