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A B S T R A C T

Liu et al. conducted an insightful investigation into feature importance analysis for predicting CH4 adsorption 
isotherms in metal–organic frameworks (MOFs), revealing key geometric features that influence model pre-
dictions. While their use of advanced machine learning techniques, including neural networks and extra tree 
regression (ETR), achieved notable accuracy, concerns arise regarding the model-specific biases in feature 
importance metrics. This paper critically evaluates these metrics, highlighting the risks of misinterpretation due 
to the lack of ground truth validation. We advocate for the adoption of bias-free statistical methods, such as 
Spearman’s rank correlation and Kendall’s tau, which offer a more reliable framework for assessing feature 
importance. Implementing these approaches could enhance the understanding of gas–solid interactions and 
improve the reliability of machine learning applications in this domain.

Data analysis machine learning tools can be broadly categorized into 
two methods: those that rely on ground truth values and those that do 
not. In supervised machine learning, ground truth values enable the 
validation of target prediction accuracy, whereas in unsupervised 
techniques—such as feature importance evaluation, feature selection, 
feature reduction, and clustering—these values are absent, necessitating 
extra caution during analysis. Consequently, high target prediction ac-
curacy does not automatically ensure reliable feature importances, as 
accuracy validation in this context is limited solely to predicting targets 
and does not extend to verifying the significance of individual features. 
In contrast, statistical analysis leverages three key elements to accu-
rately determine the true associations between targets and features in 
the absence of ground truth values: the underlying data distribution, the 
statistical relationships between variables, and the validation of these 
relationships through p-values. These methods provide a more robust 
framework for inference compared to feature importances derived from 
machine learning models, which often do not incorporate these critical 
statistical components.

Liu et al. conducted an in-depth study on feature importance analysis 
in gas–solid interaction materials and devices, specifically targeting the 
prediction of CH4 adsorption isotherms in metal–organic frameworks 
(MOFs) [1]. They developed neural network protocols that demon-
strated remarkable accuracy, achieving an R2 value of 0.992 for the 
geometric model. Their analysis of feature importance revealed three 
pivotal geometric factors—pore fraction, surface area, and density—that 
significantly influenced the model’s predictive capabilities [1]. This 
rigorous approach not only enhances our understanding of gas adsorp-
tion behavior but also underscores the critical role these geometric 
features play in optimizing MOF design for improved performance [1].

Furthermore, Liu et al. optimized their machine learning approach 
using tree-integrated extra tree regression (ETR), which achieved a root 
mean square error (RMSE) as low as 0.24 eV. Their subsequent feature 
importance analysis revealed that elemental group characteristics from 

the periodic table, surface energy, and melting point were essential 
descriptors for predicting gas adsorption behavior [1]. By employing the 
random forest (RF) algorithm for a deeper analysis, they found that the 
electric dipole moment proved to be particularly effective in enhancing 
predictions related to adsorption processes. However, the models uti-
lized, including support vector machines and neural networks, operated 
as black boxes, complicating the direct interpretation of individual 
feature contributions [1]. Liu et al. introduced SHAP with these models.

While Liu et al. provided valuable insights into machine learning 
applications for gas–solid interaction materials and devices, this paper 
raises significant concerns regarding the reliance on feature importance 
metrics derived from models such as neural networks, extra tree 
regression (ETR), and random forests (RF). These techniques are 
inherently model-specific, and their associated non-negligible biases can 
lead to misleading conclusions. Importantly, while predictions gener-
ated by machine learning can be validated against ground truth values, 
the metrics for feature importance lack similar validation, increasing the 
risk of misinterpretation. It is crucial for Liu et al. to recognize that a 
high level of target prediction accuracy does not necessarily imply the 
reliability of feature importance metrics.

Different modeling techniques employ distinct methodologies for 
calculating feature importance, resulting in varied outcomes. This 
variability highlights the potential biases inherent in these metrics, 
especially when ground truth values are unavailable. Concerns about 
bias in feature importance assessments from machine learning models 
have been extensively documented in over 100 peer-reviewed articles 
[2–5]. Furthermore, approaches like SHAP (SHapley Additive exPlana-
tions) are particularly susceptible to this issue, as they rely solely on the 
underlying model. Consequently, SHAP inherits and even amplifies the 
biases present in the machine learning models themselves, which can 
lead to misleading conclusions [6–10]. This underscores the necessity 
for a careful examination of feature importance metrics and the imple-
mentation of more robust and unbiased statistical methods in future 
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analyses.
Although SHAP is designed as a model-agnostic tool to explain pre-

dictions by calculating the marginal contribution of each feature, its 
outputs are inherently tied to the behavior of the underlying machine 
learning model. In practice, when you invoke a function such as ‘explain 
= SHAP(model)’, the resulting SHAP values directly reflect the biases, 
limitations, and feature importance as determined by the provided 
model. If the model itself is biased or has generated skewed feature 
importances—often due to issues like the absence of ground truth for 
validation—these biases will be inherited (and potentially amplified) by 
the SHAP explanation [6–10]. In contrast, our proposed statistical 
methods, illustrated by the function ‘explain = STATS(data)’, operate 
directly on the data rather than on a model’s outputs. This approach 
addresses feature relationships using fundamental statistical principles 
(such as data distribution, variable relationships, and p-values), thereby 
offering a framework that is not susceptible to the biases of any specific 
model.

In light of these issues, this paper advocates for the use of bias-free 
statistical methods, such as Spearman’s rank correlation with p-values 
[11,12] and Kendall’s tau with p-values [13,14], both of which are 
nonlinear and nonparametric approaches. These methods offer a more 
robust and reliable framework for evaluating feature importance while 
minimizing biases associated with traditional machine learning evalu-
ations. By adopting such approaches, researchers can achieve clearer 
and more accurate insights into the factors influencing gas–solid 
interactions.

While Spearman’s rank correlation and Kendall’s tau, along with 
their accompanying p-values, effectively measure nonlinear and 
nonparametric associations between two variables, they are not 
designed to capture the nuanced contributions of feature variables to 
model predictions. In practice, the correlation between a feature and the 
prediction outcome may not align with the feature’s actual influence 
when integrated into a predictive model, largely due to interactions and 
complex dependencies within the model itself. The ultimate goal of 
assessing feature importance is to accurately quantify the true associa-
tions between variables. However, because models often lack ground 
truth values and may incorporate biases, the feature importances 
derived from them can be inherently skewed. Our proposed approach 
utilizes robust statistical methods to calculate true associations, offering 
an evaluation that is not tainted by the biases present in model outputs. 
While this paper acknowledges the value of model-based target pre-
dictions, it argues that true associations should be assessed through 
these unbiased statistical measures rather than relying solely on 
potentially misleading feature importances from the model.

To clarify, Liu et al. provide a comprehensive review of existing 
machine learning models used for predicting gas adsorption rather than 
developing these models themselves. Their work synthesizes and eval-
uates various approaches from the literature, highlighting current 
trends, challenges, and opportunities in the field. We have updated the 
manuscript accordingly to accurately reflect that Liu et al.’s contribution 
lies in their critical review of the state-of-the-art rather than in model 
development.

While acknowledging that machine learning is effectively used for 
target prediction in gas catalysis, this paper primarily raises critical 

concerns about the reliance on interpretative methods such as feature 
importance and SHAP, highlighting their potential biases and 
limitations.
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