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A B S T R A C T

Recent research by Mahapatra et al. highlights the promise of unsupervised learning techniques in 2D MXenes- 
based photocatalytic applications; however, the absence of ground truth data poses significant challenges in 
validating both feature identification and clustering quality. The approach presented here advocates for the 
integration of advanced clustering methods that overcome the limitations of traditional techniques. In particular, 
nonlinear and nonparametric algorithms, such as HDBSCAN and OPTICS, are favored for their ability to 
accommodate irregular data structures without relying on conventional clustering assumptions. Additionally, 
complementary evaluation metrics—including the Silhouette Score, Davies-Bouldin Index, and Gap Statis
tic—are introduced to comprehensively assess cluster cohesion, separation, and the optimal number of clusters. 
This integrated framework is designed to enhance the validation of unsupervised clustering outcomes and 
improve the overall reliability of analyses in photocatalytic research.

Mahapatra et al. investigated the role of artificial intelligence in 2D 
MXenes-based photocatalytic applications [1]. They highlighted the use 
of unsupervised learning techniques, which facilitate classification and 
grouping within a dataset based on similarities, thereby identifying the 
most relevant information. Key methods in unsupervised learning 
include K-means clustering, autoencoders, and generative adversarial 
networks (GANs) [1].

The core challenge in unsupervised machine learning is the lack of 
ground truth labels, which makes validation significantly more difficult 
compared to supervised learning. This challenge is evident in studies 
such as Mahapatra et al.’s, where the approach to cluster validation is 
not clearly outlined. In contrast to supervised methods that can be 
directly evaluated against known outcomes, unsupervised techniques 
must depend on internal validation metrics—a predicament that 
nonlinear and nonparametric robust statistical methods attempt to 
mitigate [2,3].

Conventional clustering methods, like K-means, rely on several key 
assumptions: clusters are spherical, variances are uniform, distances are 
measured in Euclidean space, and boundaries are linear. These as
sumptions frequently fail when applied to complex, nonlinear, and 
nonparametric data in coordination chemistry, where clusters often 
display irregular shapes and varying densities. As a result, the use of 
traditional methods can lead to distorted and potentially misleading 
conclusions [4–8].

To overcome these issues, we advocate for the use of advanced 
clustering algorithms: HDBSCAN [9] and OPTICS [10]. HDBSCAN 
builds upon DBSCAN through hierarchical clustering, which allows it to 
handle clusters of varying densities and shapes while autonomously 
identifying the optimal number of clusters. OPTICS, on the other hand, 
creates a density-based ordering of points, facilitating the detection of 
clusters across different density scales without the need for manual 
parameter adjustments.

For a rigorous evaluation of clustering performance, we employ 

three complementary metrics: the Silhouette Score [11], which assesses 
both cluster cohesion and separation; the Davies-Bouldin Index [12], 
which measures the similarity between clusters; and the Gap Statistic 
[13], which objectively determines the optimal number of clusters by 
comparing the observed within-cluster variation to that expected under 
a null reference distribution. This integrated evaluation framework of
fers a systematic approach to validating clustering outcomes, making it 
particularly valuable for the analysis of complex chemical datasets.
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